Quaternary affine variety codes over a Klein-like curve

被引:0
作者
Nupur Patanker
Sanjay Kumar Singh
机构
[1] Indian Institute of Science Education and Research,
来源
Indian Journal of Pure and Applied Mathematics | 2024年 / 55卷
关键词
Affine variety codes; Groebner basis; Klein-like curves; Generalized Hamming weights; Symbol-pair distance; 94B27 (13P10 11T71);
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we study primary monomial affine variety codes defined from the Klein-like curve x2y+y2+x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{2}y+y^{2}+x$$\end{document} over F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{4}$$\end{document}. Implementing the techniques suggested by Geil and Özbudak in [3], we estimate the minimum distance of various considered codes. In a few cases, we obtain the exact value of the symbol-pair distance of these codes. Furthermore, we determine lower bounds on the generalized Hamming weights of the codes so obtained. Few codes obtained are the best-known codes according to [5].
引用
收藏
页码:1 / 14
页数:13
相关论文
共 16 条
  • [1] Fitzgerald J(1998)Decoding affine variety codes using Grobner bases Des. Codes Cryptogr. 13 147-158
  • [2] Lax RF(2019)On affine variety codes from the Klein quartic Cryptography and Communications 11 237-257
  • [3] Geil O(2008)Evaluation codes from order domain theory Finite Fields and Their Applications 14 92-123
  • [4] Özbudak F(2000)Construction of improved geometric Goppa codes from Klein curves and Klein-like curves Appl. Algebra Engrg. Comm. Comput. 10 433-464
  • [5] Andersen HE(2011)Codes for symbol-pair read channels IEEE Transaction on Information Theory 57 8011-8020
  • [6] Geil O(1977)The weight distribution of irreducible cyclic codes with block lengths Discrete Math. 18 179-211
  • [7] Kolluru MS(1978)The weight distribution of linear codes over Discrete Math. 23 159-168
  • [8] Feng GL(1991) having generator matrix over IEEE Trans. Inform. Theory 37 1412-1418
  • [9] Rao TRN(undefined)Generalized Hamming weights for linear codes undefined undefined undefined-undefined
  • [10] Cassuto Y(undefined)undefined undefined undefined undefined-undefined