Subexponential Upper and Lower Bounds in Wasserstein Distance for Markov Processes

被引:0
|
作者
Nikola Sandrić
Ari Arapostathis
Guodong Pang
机构
[1] University of Zagreb,Department of Mathematics
[2] University of Texas at Austin,Department of Electrical and Computer Engineering
[3] Rice University,Department of Computational and Applied Mathematics
来源
Applied Mathematics & Optimization | 2022年 / 85卷
关键词
Exponential and subexponential ergodicity; Wasserstein distance; Itô process; Foster–Lyapunov condition; Asymptotic flatness (uniform dissipativity); Langevin diffusion process; Ornstein–Uhlenbeck process; Primary 60J05; 60J25; Secondary 60H10; 60J75;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, relying on Foster–Lyapunov drift conditions, we establish subexponential upper and lower bounds on the rate of convergence in the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {L}^p$$\end{document}-Wasserstein distance for a class of irreducible and aperiodic Markov processes. We further discuss these results in the context of Markov Lévy-type processes. In the lack of irreducibility and/or aperiodicity properties, we obtain exponential ergodicity in the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {L}^p$$\end{document}-Wasserstein distance for a class of Itô processes under an asymptotic flatness (uniform dissipativity) assumption. Lastly, applications of these results to specific processes are presented, including Langevin tempered diffusion processes, piecewise Ornstein–Uhlenbeck processes with jumps under constant and stationary Markov controls, and backward recurrence time chains, for which we provide a sharp characterization of the rate of convergence via matching upper and lower bounds.
引用
收藏
相关论文
共 23 条
  • [1] Subexponential Upper and Lower Bounds in Wasserstein Distance for Markov Processes
    Sandric, Nikola
    Arapostathis, Ari
    Pang, Guodong
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 85 (03):
  • [2] Evolution of the Wasserstein distance between the marginals of two Markov processes
    Alfonsi, Aurelien
    Corbetta, Jacopo
    Jourdain, Benjamin
    BERNOULLI, 2018, 24 (4A) : 2461 - 2498
  • [3] ESTIMATING PROCESSES IN ADAPTED WASSERSTEIN DISTANCE
    Backhoff, Julio
    Bartl, Daniel
    Beiglbock, Mathias
    Wiesel, Johannes
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (01): : 529 - 550
  • [4] Quantitative bounds of convergence for geometrically ergodic Markov chain in the Wasserstein distance with application to the Metropolis Adjusted Langevin Algorithm
    Alain Durmus
    Éric Moulines
    Statistics and Computing, 2015, 25 : 5 - 19
  • [5] Quantitative bounds of convergence for geometrically ergodic Markov chain in the Wasserstein distance with application to the Metropolis Adjusted Langevin Algorithm
    Durmus, Alain
    Moulines, Eric
    STATISTICS AND COMPUTING, 2015, 25 (01) : 5 - 19
  • [6] Subgeometric rates of convergence in Wasserstein distance for Markov chains
    Durmus, Alain
    Fort, Gersende
    Moulines, Eric
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1799 - 1822
  • [7] Perturbation theory for Markov chains via Wasserstein distance
    Rudolf, Daniel
    Schweizer, Nikolaus
    BERNOULLI, 2018, 24 (4A) : 2610 - 2639
  • [8] Quantitative bounds for Markov chain convergence: Wasserstein and total variation distances
    Madras, Neal
    Sezer, Deniz
    BERNOULLI, 2010, 16 (03) : 882 - 908
  • [9] Aggregated Wasserstein Distance and State Registration for Hidden Markov Models
    Chen, Yukun
    Ye, Jianbo
    Li, Jia
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (09) : 2133 - 2147
  • [10] Wasserstein distance estimates for jump-diffusion processes
    Breton, Jean-Christophe
    Privault, Nicolas
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 172