In this article, relying on Foster–Lyapunov drift conditions, we establish subexponential upper and lower bounds on the rate of convergence in the Lp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {L}^p$$\end{document}-Wasserstein distance for a class of irreducible and aperiodic Markov processes. We further discuss these results in the context of Markov Lévy-type processes. In the lack of irreducibility and/or aperiodicity properties, we obtain exponential ergodicity in the Lp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {L}^p$$\end{document}-Wasserstein distance for a class of Itô processes under an asymptotic flatness (uniform dissipativity) assumption. Lastly, applications of these results to specific processes are presented, including Langevin tempered diffusion processes, piecewise Ornstein–Uhlenbeck processes with jumps under constant and stationary Markov controls, and backward recurrence time chains, for which we provide a sharp characterization of the rate of convergence via matching upper and lower bounds.