Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable hamiltonian systems. I

被引:0
作者
A. M. Samoilenko
Ya. A. Prikarpatskii
机构
关键词
Vector Field; Riemannian Surface; Hamiltonian System; Symplectic Manifold; Symplectic Structure;
D O I
10.1007/BF02981688
中图分类号
学科分类号
摘要
By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville-Arnol’d integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytic method for the investigation of the corresponding mapping of imbedding of an invariant torus into the phase space. This enables one to describe analytically the structure of quasiperiodic solutions of the Hamiltonian system under consideration.
引用
收藏
页码:1556 / 1568
页数:12
相关论文
共 5 条
[1]  
Duistermaat J. J.(1980)On global action-angles Comm. Pure Appl. Math. 33 687-706
[2]  
Nekhoroshev N. N.(1972)The action-angle variables and their generalizations Tr. Mosk. Mat. Obshch. 26 181-198
[3]  
Ercolani N.(1989)Painleve property and geometry Physica 34 303-346
[4]  
Siggia E. D.(1998)Asymptotic method for the investigation of Ukr. Mat. Zh. 50 1366-1387
[5]  
Samoilenko A. M.(undefined)-frequency oscillation systems undefined undefined undefined-undefined