On the Poincaré expansion of the Hurwitz zeta function

被引:0
作者
Bujar Fejzullahu
机构
[1] University of Prishtina,Department of Mathematics
来源
Lithuanian Mathematical Journal | 2021年 / 61卷
关键词
Hurwitz zeta function; Poincaré expansion; exponential improved expansion; incomplete gamma function; Lommel functions; 11M35; 41A60; 30E15; 33C47;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we extend the result of Paris [R.B. Paris, The Stokes phenomenon associated with the Hurwitz zeta function ζ(s, a), Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461(2053):297–304, 2005] on the exponentially improved expansion of the Hurwitz zeta function ζ(s, z), the expansion of which can be reduced to the large-z Poincaré asymptotics of ζ(s, z). Furthermore, we deduce some new series and integral representations of the Hurwitz zeta function ζ(s, z).
引用
收藏
页码:460 / 470
页数:10
相关论文
共 10 条
[1]  
Dixit A(2021)On Hurwitz zeta function and Lommel functions Int. J. Number Theory 7 393-404
[2]  
Kumar R(2016)Neumann series and Lommel functions of two variables Integral Transforms Spec. Funct. 27 443-453
[3]  
Fejzullahu BX(2019)Partial fraction expansion of the hypergeometric functions Integral Transforms Spec. Funct. 30 240-253
[4]  
Fejzullahu BX(2015)Rigorous high-precision computation of the Hurwitz zeta function and its derivatives Numer. Algorithms 69 253-270
[5]  
Johansson F(2004)Some integral and asymptotic formulas associated with the Hurwitz zeta function Appl. Math. Comput. 154 641-664
[6]  
Kanemitsu S(1997)Spaces of holomorphic functions equivalent to the even Maass cusp forms Invent. Math. 127 271-306
[7]  
Kumagai H(undefined)undefined undefined undefined undefined-undefined
[8]  
Srivastava HM(undefined)undefined undefined undefined undefined-undefined
[9]  
Yoshimoto M(undefined)undefined undefined undefined undefined-undefined
[10]  
Lewis JB(undefined)undefined undefined undefined undefined-undefined