Uniqueness theorems of entire functions with shared-set in an angular domain

被引:0
作者
Wei Chuan Lin
Seiki Mori
Hong Xun Yi
机构
[1] Fujian Normal University,Department of Mathematics
[2] Yamagata University,Department of Mathematical Sciences, Faculty of Science
[3] Shandong University,Department of Mathematics
来源
Acta Mathematica Sinica, English Series | 2008年 / 24卷
关键词
shared-set; uniqueness; entire function; angular domain; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
There have been lots of papers on the uniqueness theory of entire functions concerning shared-sets in the whole complex plane. However, it seems that the uniqueness theory in an angular domain is not widely investigated. In this paper, we study the uniqueness of entire functions concerning shared-sets in an angular domain instead of the whole complex plane, and we supply examples to show that Theorem 1 is sharp.
引用
收藏
相关论文
共 22 条
[1]  
Yi H. X.(1994)Uniqueness of meromorphic functions and a question of Gross Science in China, Series A 37 802-813
[2]  
Frank G.(1998)A unique range set for meromorphic functions with 11 elements Complex Variables Theory Appl. 37 185-193
[3]  
Reinders M.(2000)On uniqueness of meromorphic functions sharing finite sets Amer. J. Math. 122 1175-1203
[4]  
Fujimoto H.(1996)On the unique range set of meromorphic functions Proc. of Amer. Math. Soc. 124 177-185
[5]  
Li P.(2000)On the cardinality of the unique range set for meromorphic and entire functions Indian J. Pure Appl. Math. 31 431-440
[6]  
Yang C. C.(1995)Meromorphic functions sharing one value and unique range sets Kodai Math. J. 18 515-522
[7]  
Liao L.(1995)The unique range sets for entire or meromorphic functions Complex Variables Theory Appl. 28 13-21
[8]  
Yang C. C.(1925)Uber die Eigenschaften meromorpher Funktionen in einem Winkelraum Acta Soc. Sci. Fenn. 50 1-45
[9]  
Mues E.(1939)Sur les fonctions meromorphes dans un angle C. R. Acad. Sci. 208 718-720
[10]  
Reinders M.(1961)Connection between the growth of meromorphic functions and the distribution of its values Izv. AN SSSR, Ser. Matem. 25 277-328