The endomorphism monoids and automorphism groups of Cayley graphs of semigroups

被引:0
作者
Behnam Khosravi
机构
[1] Institute for Advanced Studies in Basic Sciences,Department of Mathematics
来源
Semigroup Forum | 2017年 / 95卷
关键词
Cayley graphs of semigroups; Vertex-transitive graphs; The automorphism groups of Cayley graphs of semigroups; The endomorphism monoids of Cayley graphs of semigroups;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we introduce the notions of color-permutable automorphisms and color-permutable vertex-transitive Cayley graphs of semigroups. As a main result, for a finite monoid S and a generating set C of S, we explicitly determine the color-permutable automorphism group of Cay(S,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Cay}(S,C)$$\end{document} [Theorem 1.1]. Also for a monoid S and a generating set C of S, we explicitly determine the color-preserving automorphism group (endomorphism monoid) of Cay(S,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Cay}(S,C)$$\end{document} [Proposition 2.3 and Corollary 2.4]. Then we use these results to characterize when Cay(S,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Cay}(S,C)$$\end{document} is color-endomorphism vertex-transitive [Theorem 3.4].
引用
收藏
页码:179 / 191
页数:12
相关论文
共 45 条
[1]  
Bhoumik S(2014)On the automorphism groups of almost all circulant graphs and digraphs ARS Math. Contemp. 7 499-518
[2]  
Dobson T(1981)On the full automorphism group of a graph Combinatorica 1 243-256
[3]  
Morris J(2004)An answer to a question of Kelarev and Praeger on Cayley graphs of semigroups Semigroup Forum 69 457-461
[4]  
Godsil C(1994)Combinatorial properties and homomorphisms of semigroups Int. J. Algebra Comput. 4 443-450
[5]  
Jiang Z(2002)On undirected Cayley graphs Aust. J. Combin. 25 73-78
[6]  
Kelarev AV(2004)Labelled Cayley graphs and minimal automata Aust. J. Combin. 30 95-101
[7]  
Kelarev AV(2006)On Cayley graphs of inverse semigroups Semigroup Forum 72 411-418
[8]  
Kelarev AV(2003)On transitive Cayley graphs of groups and semigroups Eur. J. Combin. 24 59-72
[9]  
Kelarev AV(2002)Directed graphs and combinatorial properties of semigroups J. Algebra 251 16-26
[10]  
Kelarev AV(2003)A combinatorial property and Cayley graphs of semigroups Semigroup Forum 66 89-96