Operators acting in the dual spaces of discrete Cesàro spaces

被引:0
作者
José Bonet
Werner J. Ricker
机构
[1] Universitat Politècnica de València,Instituto Universitario de Matemática Pura y Aplicada IUMPA
[2] Katholische Universität Eichstätt-Ingolstadt,Math.
来源
Monatshefte für Mathematik | 2020年 / 191卷
关键词
Banach sequence space; Cesàro operator; Regular operator; Multiplier; Primary 46B45; 47B37; Secondary 47A10; 47A16; 47A35;
D O I
暂无
中图分类号
学科分类号
摘要
The discrete Cesàro (Banach) sequence spaces ces(r),1<r<∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\text {ces}}}(r), 1< r < \infty ,$$\end{document} have been thoroughly investigated for over 45 years. Not so for their dual spaces d(s)≅(ces(r))′,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ d (s) \cong ( {{\text {ces}}}(r))', $$\end{document} with 1s+1r=1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{s} + \frac{1}{r} = 1 ,$$\end{document} which are somewhat unwieldy. Our aim is to undertake a further study of the spaces d(s) and of various operators acting between these spaces. It is shown that d(s)⊆d(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ d (s) \subseteq d (t)$$\end{document} whenever s≤t,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ s \le t ,$$\end{document} with the inclusion being compact if s<t.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ s< t .$$\end{document} The classical Cesàro operator C is continuous from d(s) into d(t) precisely when s≤t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ s \le t $$\end{document} and compact precisely when s<t.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ s < t .$$\end{document} Moreover, C even maps the larger space ces(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\text {ces}}}(s)$$\end{document} continuously into d(s). This is a consequence of the Hardy–Littlewood maximal theorem and the remarkable property, for each 1<s<∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 1< s < \infty ,$$\end{document} that x∈CN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x \in \mathbb {C}^{\mathbb {N}} $$\end{document} satisfies C(C(|x|))∈d(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C (C (| x| )) \in d (s)$$\end{document} if and only if C(|x|)∈d(s).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C (| x | ) \in d (s).$$\end{document} These results are used to analyze the spectrum and to determine the norm and the mean ergodicity of C acting in d(s). Similar properties for multiplier operators are also treated.
引用
收藏
页码:487 / 512
页数:25
相关论文
共 35 条
[1]  
Albanese AA(2019)Multiplier and averaging operators in the Banach spaces Positivity 23 177-193
[2]  
Bonet J(1981)On the o-spectrum of regular operators and the spectrum of measures Math. Z. 178 271-287
[3]  
Ricker WJ(2009)Structure of Cesàro function spaces Indag. Math. (N.S.) 20 329-379
[4]  
Arendt W(1973)On the upper and lower majorant properties in Q. J. Math. Oxf. II Ser. 24 119-128
[5]  
Astashkin SV(2006)Weighted Hardy inequalities for decreasing sequences and functions Math. Ann. 334 489-531
[6]  
Maligranda L(2004)Some properties of Stud. Math. 165 135-157
[7]  
Bachelis GF(2019)-supercyclic operators J. Math. Anal. Appl. 475 1448-1471
[8]  
Bennett G(2013)The Cesàro space of Dirichlet series and its multiplier algebra J. Math. Anal. Appl. 407 387-397
[9]  
Grosse-Erdmann K-G(2013)Solid extensions of the Cesàro operator on the Hardy space Integral Equ. Oper. Theory 76 447-449
[10]  
Bourdon PS(2014)A feature of averaging Integral Equ. Oper. Theory 80 61-77