Rational surfaces with finitely generated Cox rings and very high Picard numbers

被引:0
作者
Brenda Leticia De La Rosa-Navarro
Juan Bosco Frías-Medina
Mustapha Lahyane
机构
[1] Universidad Autónoma de Baja California,Facultad de Ciencias
[2] Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) Edificio C-3,Instituto de Física y Matemáticas (IFM)
[3] Ciudad Universitaria,undefined
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2017年 / 111卷
关键词
Cox rings; Rational surfaces; Anticanonical Iitaka dimension; Effective monoid; Geometrically ruled surfaces ; Blowing-up; Primary 14C20; 14C22; 14J26; Secondary 14C17; 14E30; 14Q20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide new families of smooth projective rational surfaces whose Cox rings are finitely generated. These surfaces are constructed by blowing-up points in Hirzebruch surfaces and may have very high Picard numbers. Such construction is not straightforward, and we achieve our results using the facts that these surfaces are extremal, and their effective monoids are finitely generated. Furthermore, we give an example illustrating the existence of rational surfaces which are not extremal. The base field of our varieties is assumed to be algebraically closed of arbitrary characteristic.
引用
收藏
页码:297 / 306
页数:9
相关论文
共 23 条
  • [1] Artebani M(2010)On Cox rings of K3 surfaces Compos. Math. 146 964-998
  • [2] Hausen J(2011)Cox rings of surfaces and the anticanonical Iitaka dimension Adv. Math. 226 5252-5267
  • [3] Laface A(2006)Hilbert’s 14th problem and Cox rings Compos. Math. 142 1479-1498
  • [4] Artebani M(1995)The homogeneous coordinate ring of a toric variety J. Algebraic Geom. 4 17-50
  • [5] Laface A(2005)The total coordinate ring of a smooth projective surface J. Algebra 284 91-101
  • [6] Castravet AM(2016)The cone of curves and the Cox ring of rational surfaces given by divisorial valuations Adv. Math. 290 1040-1061
  • [7] Tevelev J(1997)Anticanonical rational surfaces Trans. Am. Math. Soc. 349 1191-1208
  • [8] Cox D(2010)Global aspects of the geometry of surfaces Ann. Univ. Paedagog. Crac. Stud. Math. 9 5-41
  • [9] Galindo C(2000)Mori dream spaces and GIT Mich. Math. J. 48 331-348
  • [10] Monserrat F(2009)A survey on Cox rings Geom. Dedicata 139 269-287