Facile Electrospinning Preparation and Up-Conversion Luminescence Performance of Y3Al5O12:Er3+, Yb3+ Nanobelts

被引:0
作者
Fei Bi
Xiangting Dong
Jinxian Wang
Guixia Liu
机构
[1] Changchun University of Science and Technology,Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
来源
Journal of Inorganic and Organometallic Polymers and Materials | 2014年 / 24卷
关键词
Electrospinning; YAG:Er; , Yb; Nanobelts; Nanostructure; Up-conversion luminescence;
D O I
暂无
中图分类号
学科分类号
摘要
Electrospinning technique was used to prepare PVP/YNO33+YbNO33+ErNO33+AlNO33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{PVP}}/\left[ {{\text{Y}}\left( {{\text{NO}}_{ 3} } \right)_{ 3} + {\text{Yb}}\left( {{\text{NO}}_{ 3} } \right)_{ 3} + {\text{Er}}\left( {{\text{NO}}_{ 3} } \right)_{ 3} + {\text{Al}}\left( {{\text{NO}}_{ 3} } \right)_{ 3} } \right] $$\end{document} composite nanobelts and novel structures of Y3Al5O12:Er3+, Yb3+ (denoted as YAG:Er3+, Yb3+ for short) nanobelts have been successfully fabricated after calcination of the relevant composite nanobelts at 900 °C for 8 h. YAG:Er3+, Yb3+ nanobelts were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and fluorescence spectroscopy. XRD analysis indicated that YAG:Er3+, Yb3+ nanobelts were cubic in structure with space group Ia3d. SEM analysis and histograms revealed that the width of YAG:Er3+, Yb3+ nanobelts was ca. 1.8 ± 0.37 μm under the 95 % confidence level, and the thickness was ca. 81.8 nm. Up-conversion emission spectra analysis manifested that YAG:Er3+, Yb3+ nanobelts respectively emitted strong green and red emissions centering at 522, 554 and 648 nm under the excitation of a 980-nm diode laser. The green emissions were assigned to the energy levels transitions of 2H11/2,4S3/2→4I15/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ^{ 2} {\text{H}}_{ 1 1/ 2} ,^{ 4} {\text{S}}_{ 3/ 2} \to^{ 4} {\text{I}}_{ 1 5/ 2} $$\end{document} of Er3+ ions, and the red emission originated from the energy levels transition of 4F9/2→4Il5/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ^{ 4} {\text{F}}_{ 9/ 2} \to ^{ 4} {\text{I}}_{{{\text{l5}}/ 2}} $$\end{document} of Er3+ ions. The up-conversion luminescence of YAG:Er3+, Yb3+ nanobelts doped with various concentrations of Yb3+ and Er3+ was studied and the optimum molar ratio of Yb3+ to Er3+ was found to be 15:1. CIE analysis demonstrated that color-tuned luminescence can be obtained by adjusting doping concentrations of Yb3+ and Er3+ ions, which could be applied in the fields of optical telecommunication and optoelectronic devices. The up-conversion luminescent mechanism and the formation mechanism of YAG:Er3+, Yb3+ nanobelts were also proposed.
引用
收藏
页码:407 / 415
页数:8
相关论文
共 147 条
[1]  
Saladino ML(2010)undefined J. Alloys Compd. 737 491-412
[2]  
Nasillo G(2009)undefined J. Lumin. 401 129-undefined
[3]  
Martino DC(2009)undefined J. Lumin. 69 129-undefined
[4]  
Caponetti E(2012)undefined J. Non-Cryst. Solids 88 358-undefined
[5]  
Fadlalla HMH(2011)undefined J. Alloys Compd. 1848 509-undefined
[6]  
Tang CC(2010)undefined Ceram. Int. 2197 36-undefined
[7]  
Elsanousi A(2010)undefined J. Eur. Ceram. Soc. 73 30-undefined
[8]  
Ding XX(2005)undefined Opt. Mater. 655 27-undefined
[9]  
Qi SR(2010)undefined J. Lumin. 488 130-undefined
[10]  
Mukherjee S(2008)undefined Appl. Energy 483 85-undefined