Degree theory for a generalized set-valued variational inequality with an application in Banach spaces

被引:0
作者
Zhong Bao Wang
Nan Jing Huang
机构
[1] Sichuan University,Department of Mathematics
来源
Journal of Global Optimization | 2011年 / 49卷
关键词
Generalized set-valued variational inequality; Topological degree; Generalized ; -projection operator; Normalized duality mapping; Set-valued mapping;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a degree theory for a generalized set-valued variational inequality is built in a Banach space. As an application, an existence result of solutions for the generalized set-valued variational inequality is given under some suitable conditions.
引用
收藏
页码:343 / 357
页数:14
相关论文
共 32 条
  • [1] Browder F.E.(1983)Fixed point theory and nonlinear problems Bull. Am. Math. Soc. 9 1-39
  • [2] Chen Y.(2005)Topological degree theory for muti-valued mapping of class ( Arch. Math. 84 325-333
  • [3] Cho Y.J.(1987)) Large Scale Syst. 12 173-184
  • [4] Cohen G.(1951)Nash equilibria: gradient and decomposition algorithms Pac. J. Math. 1 353-367
  • [5] Dugundji J.(2009)An extension of Tietze’s theorem Nonlinear Anal. TMA 70 3997-4007
  • [6] Fan J.H.(1995)Iterative schemes for approximating solutions of generalized variational inequalities in Banach spaces Trans. Am. Math. Soc. 347 233-259
  • [7] Liu X.(2009)Generalization of Browder’s degree theory Nonlinear Anal. TMA 70 4350-4368
  • [8] Li J.L.(1999)The Leray-Schauder approach to the degree theory for ( Adv. Differ. Equ. 4 413-456
  • [9] Hu S.(2008))-perturbations of maximal monotone operators in separable reflexive Banach spaces J. Glob. Optim. 41 135-145
  • [10] Parageorgiou N.S.(2009)Topological degree theories for densely defined mapping involving operators of type ( Eur. J. Oper. Res. 192 730-736