Nonexistence of positive solutions for a class of semilinar elliptic systems in a ball

被引:0
作者
Hai D.D. [1 ]
机构
[1] Department of Mathematics and Statistics, Mississippi State University, Mississippi State, 39762, MS
关键词
Elliptic systems; Nonexistence; Positive solutions;
D O I
10.1007/s11587-014-0194-8
中图分类号
学科分类号
摘要
We prove the nonexistence of positive solutions to the system (Formula Presented.) where B is the open unit ball in RN, N>1,λ,μ are positive constants bounded away from 0 with λμ large, f,g are smooth functions with f(0),g(0)<0,f∘(cg) and g∘(cf) growing at least linearly at ∞. © 2014, Università degli Studi di Napoli Federico II"."
引用
收藏
页码:57 / 64
页数:7
相关论文
共 17 条
[1]  
Ambrosetti A., Arcoya D., Buffoni B., Positive solutions for some semipositone problems via bifurcation theory, Diff. Integral Equ., 7, pp. 179-194, (1994)
[2]  
Allegretto W., Nistri P., Zecca P., Positive solutions of elliptic nonpositone problems, Diff. Integral Equ., 5, pp. 95-101, (1992)
[3]  
Arcoya D., Zertiti A., Existence and nonexistence of radially symmetric nonnegative solutions for a class of semipositone problems in an annulus, Rend. Mat. Appl., 14, pp. 625-646, (1994)
[4]  
Chhetri M., Girg P., Existence and nonexistence of positive solutions for a class of superlinear semipositone systems, Nonlinear Anal., 71, pp. 4984-4996, (2009)
[5]  
de Figueiredo D.G., Monotonicity and symmetry of solutions of elliptic systems in general domains, NoDEA Nonlinear Differ. Equ. Appl., 1, 2, pp. 119-123, (1994)
[6]  
Field R.J., Noyes R.M., Limit cycle oscillations in a model of a real chemical reaction, J. Chem. Phys., 60, pp. 1877-1884, (1974)
[7]  
Garaizar X., Existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Diff. Equ., 70, pp. 69-92, (1987)
[8]  
Hai D.D., Oruganti S., Shivaji R., Nonexistence of positive solutions for a class of semilinear elliptic systems, Rocky Mt. Math. J., 36, pp. 1845-1855, (2006)
[9]  
Hai D.D., On a class of semilinear elliptic systems, J. Math. Anal. Appl., 285, 477, (2003)
[10]  
Hai D.D., Schmitt K., On radial solutions of quasilinear boundary value problems, Topics in Nonlinear Analysis, Progress in Nonlinear Differential Equations and their Applications, vol 35, pp. 349-361, (1999)