Tree Connectivities of Cayley Graphs on Abelian Groups with Small Degrees

被引:0
作者
Yuefang Sun
Sanming Zhou
机构
[1] Shaoxing University,Department of Mathematics
[2] The University of Melbourne,Department of Mathematics and Statistics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2016年 / 39卷
关键词
Tree connectivity; Generalized connectivity; Generalized edge-connectivity; Cayley graph; Packing; 05C05; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
The generalized k-connectivity κk(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _{k}(G)$$\end{document} and the generalized k-edge-connectivity λk(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _k(G)$$\end{document} of a graph G, also known as the tree connectivities, were introduced by Hager (J Comb Theory Ser B 38:179–189, 1985) and Li et al. (Discret Math Theor Comput Sci 14:43–54, 2012), respectively. In this paper, we study these invariants for Cayley graphs on Abelian groups with degree 3 or 4. When G is cubic, we prove κk(G)=λk(G)=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _k(G) = \lambda _k(G) = 2$$\end{document} for 3≤k≤6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\le k\le 6$$\end{document} and κk(G)=λk(G)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _k(G) = \lambda _k(G) = 1$$\end{document} for 7≤k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7\le k\le n$$\end{document}. When G has degree 4, we obtain κ3(G)=λ3(G)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _{3}(G)=\lambda _3(G)=3$$\end{document}, λk(G)=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _k(G) = 2$$\end{document} and κk(G)≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _k(G)\le 2$$\end{document} for k≥8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 8$$\end{document}, and κk(G)=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _k(G) = 2$$\end{document} for k=n-1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=n-1,n$$\end{document}.
引用
收藏
页码:1673 / 1685
页数:12
相关论文
共 53 条
[1]  
Akers SB(1989)A group-theoretic model for symmetric interconnection networks IEEE Trans. Comput. 38 555-566
[2]  
Krishnamurthy B(1989)Hamiltonian decomposition of Cayley graphs of degree 4 J. Comb. Theory Ser. B 46 142-153
[3]  
Bermond J-C(1984)Circulants and their connectivities J. Graph Theory 8 487-499
[4]  
Favaron O(2010)Rainbow trees in graphs and generalized connectivity Networks 55 360-367
[5]  
Maheo M(1996)Pseudo-cartesian product and hamiltonian decompositions of Cayley graphs on abelian groups Discret. Math. 158 49-62
[6]  
Boesch F(2010)The topology of Gaussian and Eisenstein-Jacobi interconnection networks IEEE Trans. Parallel Distrib. Syst. 21 1132-1142
[7]  
Tindell R(1985)Pendant tree-connectivity J. Comb. Theory Ser. B 38 179-189
[8]  
Chartrand G(1993)Symmetry in interconnection networks based on Cayley graphs of permutation groups: a survey Parallel Comput. 19 361-407
[9]  
Okamoto F(2014)On extremal graphs with at most two internally disjoint Steiner trees connecting any three vertices Bull. Malays. Math. Sci. Soc. 37 747-756
[10]  
Zhang P(2015)Note on the spanning-tree packing number of lexicographic product graphs Discret. Math. 338 669-673