α-Continuity Properties of One-Dimensional Quasicrystals

被引:0
|
作者
David Damanik
机构
[1] Fachbereich Mathematik,
[2] Johann Wolfgang Goethe-Universität,undefined
[3] 60054 Frankfurt/Main,undefined
[4] Germany,undefined
来源
Communications in Mathematical Physics | 1998年 / 192卷
关键词
Lower Bound; Rotation Number; Fibonacci Sequence; Generalize Fibonacci Sequence;
D O I
暂无
中图分类号
学科分类号
摘要
We apply the Jitomirskaya-Last extension of the Gilbert-Pearson theory to discrete one-dimensional Schrödinger operators with potentials arising from generalized Fibonacci sequences. We prove for certain rotation numbers that for every value of the coupling constant, there exists an α > 0 such that the corresponding operator has purely α-continuous spectrum. This result follows from uniform upper and lower bounds for the ∥⋅∥L-norm of the solutions corresponding to energies from the spectrum of the operator.
引用
收藏
页码:169 / 182
页数:13
相关论文
共 50 条