The Regev conjecture and cocharacters for identities of associative algebras of PI-exponent 1 and 2

被引:0
作者
A. S. Gordienko
机构
[1] Moscow State University,
来源
Mathematical Notes | 2008年 / 83卷
关键词
associative algebra; free associative algebra; PI-exponent; algebra of PI-exponent 2; irreducible cocharacter; Young tableau; algebra of polynomial growth;
D O I
暂无
中图分类号
学科分类号
摘要
A result confirming the Regev conjecture for the codimension of associative algebras with unit which are of PI-exponent 2 is obtained. It is proved that the sequence of multiplicities of irreducible summands in proper cocharacters of algebras of PI-exponent 2 is of period 2, beginning with some index, whereas this sequence is constant for the ordinary cocharacters of the algebras of PI-exponent 1.
引用
收藏
页码:744 / 752
页数:8
相关论文
共 9 条
  • [1] Giambruno A.(1999)Exponential codimension growth of PI algebras: an exact estimate Adv. Math. 142 221-243
  • [2] Zaicev M.(1984)Codimensions and trace codimensions of matrices are asymptotically equal Israel J. Math. 48 246-250
  • [3] Regev A.(2000)Minimal varieties of algebras of exponential growth Electron. Res. Announc. Amer. Math. Soc. 6 40-44
  • [4] Giambruno A.(1973)The polynomial identities of the Grassmann algebra Trans. Amer. Math. Soc. 181 429-438
  • [5] Zaicev M.(2007)Codimensions of a commutator of length 4 UspekhiMat. Nauk 62 191-192
  • [6] Krakowski D.(1988)Representability of reduced-free algebras Algebra i Logika 27 274-294
  • [7] Regev A.(undefined)undefined undefined undefined undefined-undefined
  • [8] Gordienko A. S.(undefined)undefined undefined undefined undefined-undefined
  • [9] Kemer A. R.(undefined)undefined undefined undefined undefined-undefined