Rational solutions of the Diophantine equations f(x)2±f(y)2=z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)^2 \pm f(y)^2=z^2$$\end{document}

被引:0
作者
Ahmed El Amine Youmbai
Djilali Behloul
机构
[1] USTHB,LATN Laboratory, Faculty of Mathematics
[2] University of El Oued,Mathematics Department, Faculty of Exact Sciences
[3] USTHB,Computer Science Department
关键词
Diophantine equations; Rational solutions; Elliptic curves; Conic sections; Primary 11D45; 11D41; Secondary 14H52;
D O I
10.1007/s10998-019-00294-1
中图分类号
学科分类号
摘要
We discuss the rational solutions of the Diophantine equations f(x)2±f(y)2=z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)^2 \pm f(y)^2=z^2$$\end{document}. This problem can be solved either by the theory of elliptic curves or by elementary number theory. Inspired by the work of Ulas and Togbé (Publ Math Debrecen 76(1–2):183–201, 2010) and following the approach of Zhang and Zargar (Period Math Hung, 2018. https://doi.org/10.1007/s10998-018-0259-7) we improve the results concerning the rational solutions of these equations.
引用
收藏
页码:255 / 260
页数:5
相关论文
共 4 条
  • [1] Tengely S(2017)On certain Diophantine equations of the form J. Number Theory 174 239-257
  • [2] Ulas M(2010)On the Diophantine equation Publ. Math. Debrecen 76 183-201
  • [3] Ulas M(undefined)undefined undefined undefined undefined-undefined
  • [4] Togbé A(undefined)undefined undefined undefined undefined-undefined