Spectral synthesis for coadjoint orbits of nilpotent Lie groups

被引:0
作者
Ingrid Beltiţă
Jean Ludwig
机构
[1] Institute of Mathematics “Simion Stoilow” of the Romanian Academy,Institut Élie Cartan de Lorraine, UMR 7502
[2] Université de Lorraine,undefined
来源
Mathematische Zeitschrift | 2016年 / 284卷
关键词
Nilpotent Lie group; Spectral synthesis; Coadjoint orbit; Minimal ideal; Primary ideal; Primary 43A45; Secondary 43A20; 22E25; 22E27;
D O I
暂无
中图分类号
学科分类号
摘要
We determine the space of primary ideals in the group algebra L1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}(G) $$\end{document} of a connected nilpotent Lie group by identifying for every π∈G^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \in \widehat{G} $$\end{document} the family Iπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal I^\pi $$\end{document} of primary ideals with hull {π}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\pi \} $$\end{document} with the family of invariant subspaces of a certain finite dimensional sub-space PQπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal P_Q^\pi $$\end{document} of the space of polynomials P(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal P(G) $$\end{document} on G.
引用
收藏
页码:1111 / 1136
页数:25
相关论文
共 23 条
[1]  
Boidol J(1978)Räume primitiver Ideale von Gruppenalgebren Math. Ann. 236 1-13
[2]  
Leptin H(1973)Dual topology of a nilpotent Lie group Ann. Sci. École Norm. Sup. (4) 6 407-411
[3]  
Schürman J(1960)Opérateurs de rang fini dans les représentations unitaires Publ. Mathé. de l’IHÉS 6 13-25
[4]  
Vahle D(1987)Jets de fonctions différentiables sur le dual d’un groupe de Lie nilpotent Invent. Math. 88 375-394
[5]  
Brown ID(1981)The injection and the projection theorem for spectral sets Mon. Math. 92 167-177
[6]  
Dixmier J(1977)On a connection between nilpotent groups and oscillatory integrals associated to singularities Pac. J. Math. 73 329-363
[7]  
du Cloux F(1962)Unitary representations of nilpotent Lie groups Uspehi Mat. Nauk. 17 57-110
[8]  
Hauenschild W(1980)Polynomial growth and ideals in group algebras Manuscr. Math. 30 215-221
[9]  
Ludwig J(1983)On the spectral synthesis problem for points in the dual of a nilpotent Lie group Ark. Mat. 21 127-144
[10]  
Howe RE(1983)On primary ideals in the group algebra of a nilpotent Lie group Math. Ann. 262 287-304