Area Operator in Loop Quantum Gravity

被引:0
作者
Adrian P. C. Lim
机构
[1] Singapore Institute of Technology,
来源
Annales Henri Poincaré | 2017年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A hyperlink is a finite set of non-intersecting simple closed curves in R×R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R} \times \mathbb {R}^3$$\end{document}. Let S be an orientable surface in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}. The dynamical variables in general relativity are the vierbein e and a su(2)×su(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {su}(2)\times \mathfrak {su}(2)$$\end{document}-valued connection ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}. Together with Minkowski metric, e will define a metric g on the manifold. Denote AS(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_S(e)$$\end{document} as the area of S, for a given choice of e. The Einstein–Hilbert action S(e,ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S(e,\omega )$$\end{document} is defined on e and ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}. We will quantize the area of the surface S by integrating AS(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_S(e)$$\end{document} against a holonomy operator of a hyperlink L, disjoint from S, and the exponential of the Einstein–Hilbert action, over the space of vierbeins e and su(2)×su(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {su}(2)\times \mathfrak {su}(2)$$\end{document}-valued connections ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}. Using our earlier work done on Chern–Simons path integrals in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}, we will write this infinite dimensional path integral as the limit of a sequence of Chern–Simons integrals. Our main result shows that the area operator can be computed from a link-surface diagram between L and S. By assigning an irreducible representation of su(2)×su(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {su}(2)\times \mathfrak {su}(2)$$\end{document} to each component of L, the area operator gives the total net momentum impact on the surface S.
引用
收藏
页码:3719 / 3735
页数:16
相关论文
共 12 条
[1]  
Ashtekar A(2005)Gravity and the quantum New J. Phys. 7 198-22
[2]  
Ashtekar A(2004)Background independent quantum gravity: a status report Class. Quantum Gravity 21 R53-1158
[3]  
Lewandowski J(2011)Chern-Simons path integral on Commun. Math. Anal. 11 1-619
[4]  
Lim APC(1998) using abstract Wiener measure Living Rev. Relativ. 1 75-135
[5]  
Rovelli C(1988)Loop quantum gravity Phys. Rev. Lett. 61 1155-399
[6]  
Rovelli C(1995)Knot theory and quantum gravity Nucl. Phys. B 442 593-undefined
[7]  
Smolin L(2003)Discreteness of area and volume in quantum gravity Lect. Notes Phys. 631 41-undefined
[8]  
Rovelli C(1988)Lectures on loop quantum gravity Nucl. Phys. B 311 46-undefined
[9]  
Smolin L(1989)(2+1)-Dimensional gravity as an exactly soluble system Commun. Math. Phys. 121 351-undefined
[10]  
Thiemann T(undefined)Quantum field theory and the Jones polynomial undefined undefined undefined-undefined