Existence and nonexistence of skew branes

被引:0
作者
Serge Tabachnikov
机构
[1] Penn State,Department of Mathematics
来源
Journal of Fixed Point Theory and Applications | 2010年 / 7卷
关键词
53C40; 57R40; 57R42; Skew brane; skew loop; embedding; immersion;
D O I
暂无
中图分类号
学科分类号
摘要
A skew brane is a codimension 2 submanifold in affine space such that the tangent spaces at any two distinct points are not parallel. We show that if an oriented closed manifold has a nonzero Euler characteristic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi}$$\end{document}, then it is not a skew brane; generically, the number of oppositely oriented pairs of parallel tangent spaces is not less than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi^2{/4}}$$\end{document}. We give a version of this result for immersed surfaces in dimension 4. We construct examples of skew spheres of arbitrary odd dimensions, generalizing the construction of skew loops in 3-dimensional space due to Ghomi and Solomon (2002). We conclude with two conjectures that are theorems in 1-dimensional case.
引用
收藏
页码:419 / 431
页数:12
相关论文
共 23 条
[1]  
Blaschke W.(1949)Sulla geometria differenziale delle superficie Ann. Mat. Pura Appl. (4) 28 205-209
[2]  
Chern S.-S.(1951) nello spazio euclideo Comment. Math. Helv. 25 205-209
[3]  
Spanier E.(2005)A theorem on orientable surfaces in fourdimensional space Proc. Amer. Math. Soc. 133 3687-3690
[4]  
Ghomi M.(2006)Nonexistence of skew loops on ellipsoids Comment. Math. Helv. 81 259-270
[5]  
Ghomi M.(2002)Tangent bundle embeddings of manifolds in Euclidean space Comment. Math. Helv. 77 767-782
[6]  
Ghomi M.(2008)Skew loops and quadratic surfaces Math. Z. 258 499-512
[7]  
Solomon B.(1972)Totally skew embeddings of manifolds Trans. Amer. Math. Soc. 172 1-33
[8]  
Ghomi M.(1973)Characteristic classes of real manifolds immersed in complex manifolds Indiana Univ. Math. J. 22 1171-1181
[9]  
Tabachnikov S.(1969)On parallel tangents of embeddings in codimension 2 in Euclidean spaces Bull. Amer. Math. Soc. 75 368-369
[10]  
Lai H.F.(1968)On singularities of surfaces in Rend. Sem. Mat. Fis. Milano 38 256-263