An ordered clustering algorithm based on fuzzy c-means and PROMETHEE

被引:0
|
作者
Chengzu Bai
Ren Zhang
Longxia Qian
Lijun Liu
Yaning Wu
机构
[1] National University of Defense and Technology,Research Center of Ocean Environment Numerical Simulation, College of Meteorology and Oceanography
[2] Nanjing University of Information Science and Technology,Collaborative Innovation Center on Forecast Meteorological Disaster Warning and Assessment
[3] Meteorologic Bureau of Air Force Staff,Research Center of Software Engineering, Institute of Information System
[4] PLA University of Science and Technology,undefined
来源
International Journal of Machine Learning and Cybernetics | 2019年 / 10卷
关键词
Multicriteria decision aid; Ordered cluster; Fuzzy ; -means clustering; PROMETHEE method;
D O I
暂无
中图分类号
学科分类号
摘要
The ordered clustering problem in the context of multicriteria decision aid has been increasingly examined in management science and operational research during the past few years. However, the existing clustering algorithms may not provide an exact suggestion for a partition number for decision makers by using the diagram method. In addition, these methods may be not appropriate for real-life problems under big data environments due to their high computational complexities. Therefore, we propose a new clustering algorithm called the ordered fuzzy c-means clustering algorithm (OFCM) to overcome the abovementioned deficiencies. Different from the classical fuzzy c-means clustering algorithm, we use the net outranking flow of PROMETHEE and validity measures for clustering to establish a new objective function, whose properties are mathematically justified as well. Finally, we employ OFCM to solve a practical ordered clustering problem concerning the human development indexes. A comparison analysis with existing approaches is also conducted to validate the efficiency of OFCM.
引用
收藏
页码:1423 / 1436
页数:13
相关论文
共 50 条
  • [1] An ordered clustering algorithm based on fuzzy c-means and PROMETHEE
    Bai, Chengzu
    Zhang, Ren
    Qian, Longxia
    Liu, Lijun
    Wu, Yaning
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (06) : 1423 - 1436
  • [2] Generalized Ordered Intuitionistic Fuzzy C-Means Clustering Algorithm Based on PROMETHEE and Intuitionistic Fuzzy C-Means
    Bashir, Muhammad Adnan
    Rashid, Tabasam
    Bashir, Muhammad Salman
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2023, 2023
  • [3] Multicriteria Ordered the Profile Clustering Algorithm Based on PROMETHEE and Fuzzy c-Means
    Bashir, Muhammad Adnan
    Muhiuddin, G.
    Rashid, Tabasam
    Sardar, Muhammad Shoaib
    Mathematical Problems in Engineering, 2023, 2023
  • [4] A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm
    Corsini, P
    Lazzerini, B
    Marcelloni, F
    SOFT COMPUTING, 2005, 9 (06) : 439 - 447
  • [5] A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm
    P. Corsini
    B. Lazzerini
    F. Marcelloni
    Soft Computing, 2005, 9 : 439 - 447
  • [6] A Kernelized Fuzzy C-means Clustering Algorithm based on Bat Algorithm
    Cheng, Chunying
    Bao, Chunhua
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2018), 2018, : 1 - 5
  • [7] A Kernel Fuzzy C-means Clustering Algorithm Based on Firefly Algorithm
    Cheng, Chunying
    Bao, Chunhua
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT I, 2019, 11554 : 463 - 468
  • [8] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530
  • [9] An Improved Fuzzy C-means Clustering Algorithm
    Duan, Lingzi
    Yu, Fusheng
    Zhan, Li
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1199 - 1204
  • [10] An efficient Fuzzy C-Means clustering algorithm
    Hung, MC
    Yang, DL
    2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 225 - 232