The Neumann problem for the generalized Bagley-Torvik fractional differential equation

被引:0
作者
Svatoslav Staněk
机构
[1] Palacký University,Department of Mathematical Analysis, Faculty of Science
来源
Fractional Calculus and Applied Analysis | 2016年 / 19卷
关键词
Primary 26A33; 34A08; Secondary 34B15; 33E12; Bagley-Torvik fractional differential equation; Neumann problem; extremal principle; Caputo fractional derivative; existence; multiplicity;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the existence and multiplicity of solutions to the generalized Bagley-Torvik fractional differential equation u″ = AcDαu + f (t, u, u′) satisfying the Neumann boundary conditions u′ (0) = u′ (T) = 0. The solvability of the problem is proved by the combination of the Leray-Schauder degree method with the extremal principle.
引用
收藏
页码:907 / 920
页数:13
相关论文
共 22 条
[1]  
Al-Refai M(2012)On the fractional derivatives at extreme points Electron. J. Qual. The. Differ. Equ. 55 1-5
[2]  
C̣enesiz Y(2010)The solution of the Bagley-Torvik equation with the generalized Taylor collocation method J. Franklin Institute. 347 452-466
[3]  
Keskin Y(2005)Adomian decomposition: a tool for solving a system of fractional differential equations J. Math. Anal. Appl. 301 508-518
[4]  
Kurnaz A(2002)Numerical solution of the Bagley-Torvik equation BIT. 42 490-507
[5]  
Daftardar-Gejji V(2002)The numerical solution of linear multi-term fractional differential equations: systems of equations J. Comput. Appl. Math. 148 401-418
[6]  
Jafari H(2005)Analytical solution of the Bagley Torvik equation by Adomian decomposition method Appl. Math. Comp. 168 398-410
[7]  
Diethelm K(2013)Two-point boundary value problems for the generalized Bagley-Torvik fractional differential equation Cent. Eur. J. Math. 11 574-593
[8]  
Ford NJ(2015)Periodic problem for the generalized Basset fractional differential equation Frac. Calc. Appl. Anal. 18 1277-1290
[9]  
Edwards JT(1984)On the appearance of the fractional derivative in the behavior of real materials ASME J. Appl. Mech. 51 294-298
[10]  
Ford NJ(2010)General solution of the Bagley-Torvik equation with fractional-order derivative Commun. Nonlinear Sci. Numer. Simul. 15 1279-1285