Wiener’s Lemma and Memory Localization

被引:0
作者
Ilya A. Krishtal
机构
[1] Northern Illinois University,Dept. of Mathematical Sciences
来源
Journal of Fourier Analysis and Applications | 2011年 / 17卷
关键词
Wiener’s lemma; Resolutions of the identity; Frames; Fusion frames; g-frames; 47B99; 42C15;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain several versions of the non-commutative Wiener’s lemma for different matrix-like representations of localized operators in Hilbert spaces.
引用
收藏
页码:674 / 690
页数:16
相关论文
共 49 条
  • [1] Aldroubi A.(2008)On slanted matrices and their various applications J. Funct. Anal. 255 1667-1691
  • [2] Baskakov A.G.(2004)Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for Appl. Comput. Harmon. Anal. 17 119-140
  • [3] Krishtal I.A.(2008)(ℝ Trans. Am. Math. Soc. 360 3921-3941
  • [4] Aldroubi A.(2010)) J. Math. Anal. Appl. 370 339-349
  • [5] Cabrelli C.(2006)The noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators J. Fourier Anal. Appl. 12 105-143
  • [6] Molter U.(1990)An almost periodic non-commutative Wiener’s lemma Funct. Anal. Appl. 24 222-224
  • [7] Balan R.(1997)Density, overcompleteness, and localization of frames. I. Theory Izv. Math. 61 1113-1135
  • [8] Balan R.(1997)Wiener’s theorem and asymptotic estimates for elements of inverse matrices Sib. Math. J. 38 10-22
  • [9] Krishtal I.(2005)Asymptotic estimates for elements of matrices of inverse operators Izv. Math. 69 439-486
  • [10] Balan R.(2008)Asymptotic estimates for elements of matrices of inverse operators, and harmonic analysis Appl. Comput. Harmon. Anal. 25 114-132