Several classes of permutation polynomials with trace functions over Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{p^n}$$\end{document}

被引:0
作者
Yan-Ping Wang
Zhengbang Zha
Xiaoni Du
Dabin Zheng
机构
[1] Northwest Normal University,College of Mathematics and Statistics
[2] Hubei University,Hubei Province Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics
[3] Luoyang Normal University,School of Mathematical Sciences
关键词
Finite field; Permutation polynomial; Trace function; 05A05; 11T06; 11T55;
D O I
10.1007/s00200-022-00551-w
中图分类号
学科分类号
摘要
Permutation polynomials over finite fields constitute an active research area and have important applications in many areas of science and engineering. In this paper, several classes of permutation polynomials with trace functions are presented over Fpn(p=2,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{p^{n}} (p=2, 3)$$\end{document} by investigating the number of solutions to special equations.
引用
收藏
页码:337 / 349
页数:12
相关论文
共 31 条
[1]  
Akbary A(2011)On constructing permutations of finite fields Finite Fields Appl. 17 51-67
[2]  
Ghioca D(2009)When does Finite Fields Appl. 15 615-632
[3]  
Wang Q(2014) permute Finite Fields Appl. 28 214-243
[4]  
Charpin P(2015)? Finite Fields Appl. 32 82-119
[5]  
Kyureghyan G(2007)Sparse permutations with low differential uniformity Finite Fields Appl. 13 58-70
[6]  
Charpin P(2018)Permutation polynomials over finite fields-a survey of recent advances Cryptogr. Commun. 10 531-554
[7]  
Kyureghyan GM(2017)Permutation polynomials and applications to coding theory Finite Fields Appl. 48 261-270
[8]  
Suder V(1975)Permutation polynomials of the form J. Number Theory 7 361-365
[9]  
Hou X(2020) and permutation trinomials over finite fields with even characteristic AAECC 17 560-574
[10]  
Laigle-Chapuy Y(2011)A note on permutation polynomials over finite fields Finite Fields Appl. 35 36-51