Periodic solutions of p-Laplacian equations with singularities

被引:0
|
作者
Shipin Lu
Tao Zhong
Yajing Gao
机构
[1] Nanjing University of Information Science and Technology,College of Mathematics and Statistics
来源
Advances in Difference Equations | / 2016卷
关键词
Liénard equation; topological degree; singularity; periodic solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the problem of existence of periodic solution is studied for p-Laplacian Liénard equations with singular at x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=0$\end{document} and x=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=+\infty$\end{document}. By using the topological degree theory, some new results are obtained, and an example is given to illustrate the effectiveness of our results. Our research enriches the contents of second order differential equations with singularity.
引用
收藏
相关论文
共 50 条
  • [31] On the existence of multiple periodic solutions for the p-Laplacian
    Lü, HS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (10): : 1185 - 1199
  • [32] Periodic solutions for a generalized p-Laplacian equation
    Yang, Xiaojing
    Kim, Yong-In
    Lo, Kueiming
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 586 - 589
  • [33] PERIODIC SOLUTIONS FOR AN ORDINARY P-LAPLACIAN SYSTEM
    Zhang, Xingyong
    Tang, Xianhua
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1369 - 1396
  • [34] PERIODIC SOLUTIONS FOR p-LAPLACIAN FUNCTIONAL DIFFERENTIAL EQUATIONS WITH TWO DEVIATING ARGUMENTS
    Song, Changxiu
    Gao, Xuejun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [35] Boundedness of Solutions of Quasi-periodic p-Laplacian Equations with Jumping Nonlinearity
    Xin Li Zhang
    Ya Qun Peng
    Da Xiong Piao
    Acta Mathematica Sinica, English Series, 2023, 39 : 176 - 192
  • [36] Existence of periodic solutions of second order nonlinear p-Laplacian difference equations
    Liu, X.
    Shi, H. P.
    Zhang, Y. B.
    ACTA MATHEMATICA HUNGARICA, 2011, 133 (1-2) : 148 - 165
  • [37] Boundedness of Solutions of Quasi-periodic p-Laplacian Equations with Jumping Nonlinearity
    Xin Li ZHANG
    Ya Qun PENG
    Da Xiong PIAO
    ActaMathematicaSinica,EnglishSeries, 2023, (01) : 176 - 192
  • [38] Existence of periodic solutions of second order nonlinear p-Laplacian difference equations
    X. Liu
    H. P. Shi
    Y. B. Zhang
    Acta Mathematica Hungarica, 2011, 133 : 148 - 165
  • [39] Periodic Solutions for Second Order Equations with the Scalar p-Laplacian and Nonsmooth Potential
    Papageorgiou, Nikolaos S.
    Yannakakis, Nikolaos
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2004, 47 (01): : 107 - 117
  • [40] PERIODIC AND SUBHARMONIC SOLUTIONS FOR FOURTH-ORDER p-LAPLACIAN DIFFERENCE EQUATIONS
    Liu, Xia
    Zhang, Yuanbiao
    Shi, Haiping
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,