Unconditional uniqueness of solution for H˙sc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot H^{s_c }$$\end{document} critical 4th order NLS in high dimensions

被引:0
作者
Chao Lu
Jing Lu
机构
[1] The Graduate School of China Academy of Engineering Physics,School of Mathematical Sciences
[2] Beijing Normal University,undefined
关键词
Unconditional uniqueness; paraproduct estimates; Besov spaces; fourth order; nonlinear Schrödinger equation; 35Q55; 42B25; 46E35;
D O I
10.1007/s10114-017-7354-1
中图分类号
学科分类号
摘要
In this paper, we study the unconditional uniqueness of solution for the Cauchy problem of H˙sc(0⩽sc<2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot H^{s_c } (0 \leqslant s_c < 2)$$\end{document} critical nonlinear fourth-order Schrödinger equations i∂tu+Δ2u−ϵu = λ|u|αu. By employing paraproduct estimates and Strichartz estimates, we prove that unconditional uniqueness of solution holds in Ct(I;H˙sc(Rd))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_t (I;\dot H^{s_c } (\mathbb{R}^d ))$$\end{document} for d ≥ 11 and min{1−,8d−4}⩾α>−(d−4)+(d−4)2+644\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \left\{ {1^ - ,\tfrac{8} {{d - 4}}} \right\} \geqslant \alpha > \frac{{ - (d - 4) + \sqrt {(d - 4)^2 + 64} }} {4}$$\end{document}.
引用
收藏
页码:1028 / 1036
页数:8
相关论文
共 69 条
  • [1] Baruch G.(2010)Singular solutioins of the SIAM J. Appl. Math. 70 3319-3341
  • [2] Fibich G.(2010)-critical biharmonic nonlinear Schrödinger equation Nonlinearity 23 2867-2887
  • [3] Mandelbaum E.(2011)Ring-type singular solutioins of the biharmonic nonlinear Schrödinger equation Nonlinearity 24 1843-1859
  • [4] Baruch G.(2000)Singular solutioins of the Comptes Rendus de l’Academie des Sciences Series I Mathematics 330 87-92
  • [5] Fibich G.(2013)-supercritical biharmonic nonlinear Schrödinger equation Comm. Part. Diff. Eqns. 38 575-607
  • [6] Mandelbaum E.(2006)Dispersion estimates for fourth order Schrödinger equations Progr. Non. Diff. Eqns. Appl. 69 55-62
  • [7] Baruch G.(1990)Stability and unconditional uniqueness of solutions for energy critical wave equations in high dimensions Nonlinear Anal. TMA 14 807-836
  • [8] Fibich G.(2002)The Benjamin–Ono equation in energy space, Phase space analysis of partial differential equations SIAM J. Appl. Math. 62 1437-1462
  • [9] Ben-Artzi M.(2003)The Cauchy problem for the critical nonlinear Schrödinger equations in Commun. Contemp. Math. 5 349-367
  • [10] Koch H.(1964)Self-focusing with fourth order dispersion I. Arch. Rational Mech. Anal. 16 269-315