MHD Carreau fluid slip flow over a porous stretching sheet with viscous dissipation and variable thermal conductivity

被引:0
作者
Rehan Ali Shah
Tariq Abbas
Muhammad Idrees
Murad Ullah
机构
[1] University of Engineering and Technology Peshawar,Department of Basic Sciences and Islamiat
[2] Islamia College Peshawar,Department of Mathematics
来源
Boundary Value Problems | / 2017卷
关键词
magnetohydrodynamics (MHD); Carreau fluid flow; stretching sheet; slip flow; variable thickness; variable thermal conductivity; thermal radiation;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this article is to investigate MHD Carreau fluid slip flow with viscous dissipation and heat transfer by taking the effect of thermal radiation over a stretching sheet embedded in a porous medium with variable thickness and variable thermal conductivity. Thermal conductivity of the fluid is assumed to vary linearly with temperature. The constitutive equations of Carreau fluid are modeled in the form of partial differential equations (PDEs). Concerning boundary conditions available, the PDEs are converted to ordinary differential equations (ODEs) by means of similarity transformation. The homotopy analysis method (HAM) is used for solution of the system of nonlinear problems. The effects of various parameters such as Weissenberg number We2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{We}^{2}$\end{document}, magnetic parameter M2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M^{2}$\end{document}, power law index n, porosity parameter D, wall thickness parameter α, power index parameter m, slip parameter λ, thermal conductivity parameter ε, radiation parameter R and Prandtl number on velocity and temperature profiles are analyzed and studied graphically.
引用
收藏
相关论文
共 74 条
[1]  
Crane LJ(1970)Flow past a stretching Plate Z. Angew. Math. Phys. 21 645-647
[2]  
Gupta PS(1979)Heat and mass transfer on a stretching sheet with suction or blowing Can. J. Chem. Eng. 55 744-746
[3]  
Gupta AS(1980)Heat past a continuous moving plate with variable temperature Warme-und Stoffubertragung 14 91-93
[4]  
Soundalgekar VM(1998)Heat transfer over a stretching surface with variable surface heat flux J. Phys. D, Appl. Phys. 31 1951-1954
[5]  
Ramana TV(1985)Heat transfer characteristics of a continuous stretching surface with variable temperature J. Heat Transf. 107 248-250
[6]  
Elbashbeshy EMA(2008)Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet Phys. Lett. A 372 637-647
[7]  
Grubka LJ(1995)Hydromegnetic flow over a surface stretching with a power-law velocity Int. J. Eng. Sci. 33 429-435
[8]  
Bobba KM(2009)Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet J. Appl. Fluid Mech. 2 13-21
[9]  
Hayat T(2003)The time-dependent, compressible Poiseuille and extrudate-swell flows of a Carreau fluid with slip at the wall J. Non-Newton. Fluid Mech. 109 93-114
[10]  
Abbas Z(2004)Separation in the flow through peristaltic motion of a Carreau fluid in uniform tube Physica A 343 1-14