Norm and numerical radius inequalities for Hilbert space operators

被引:0
作者
Baharak Moosavi
Mohsen Shah Hosseini
机构
[1] Safadasht Branch,Department of Mathematics
[2] Islamic Azad University,Department of Mathematics
[3] Shahr-e-Qods Branch,undefined
[4] Islamic Azad University,undefined
来源
The Journal of Analysis | 2023年 / 31卷
关键词
Bounded linear operator; Hilbert space; Norm inequality; Numerical radius; Primary 47A12; Secondary 47A30; 47A63;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove some inequalities of the operator norm and the numerical radius for Hilbert spaces operators. More precisely, we prove that if A,B∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A, B \in \mathbb {B(H)}$$\end{document} and AB=-BA∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AB=-BA^{*}$$\end{document}, then ω(AB)≤DA‖B‖,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \omega (AB) \le D_{A} \Vert B\Vert , \end{aligned}$$\end{document}where DA=infλ∈CA-λI.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{D}_{A}}=\underset{\lambda \in {\mathbb {C}}}{\mathop {\inf }}\,\left\| A-\lambda I \right\| .$$\end{document}
引用
收藏
页码:1393 / 1400
页数:7
相关论文
共 17 条
[1]  
Cain BE(2018)Improved inequalities for the numerical radius: when inverse commutes with the norm Bulletin of the Australian Mathematical Society 2 293-296
[2]  
Dragomir SS(2006)Rivers inequalities for the numerical radius of linear operators in Hilbert space Bulletin of the Australian Mathematical Society 73 255-262
[3]  
Dragomir SS(2008)Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces Tamkang Journal of Mathematics 39 1-7
[4]  
Holbrook JAR(1969)Multiplicative properties of the numerical radius in operator theory Journal fur die Reine und Angewandte Mathematik 237 166-174
[5]  
Fong CK(1983)Unitarily invariant operator norms Canadian Journal of Mathematics 35 274-299
[6]  
Holbrook JA(2005)Numerical radius inequalities for Hilbert space operators Studia Mathematica 168 73-80
[7]  
Kittaneh F(2008)Norm inequalities for commutators of positive operators and applications Mathematische Zeitschrift 258 845-849
[8]  
Kittaneh F(2016)Some inequalities for the numerical radius for Hilbert space operators Bulletin of the Australian Mathematical Society 94 489-496
[9]  
Shah Hosseini M(2019)Some numerical radius inequalities for products of Hilbert space operators Filomat 33 2089-2093
[10]  
Omidvar ME(2020)An alternative estimate for the numerical radius of Hilbert space operators Mathematica Slovaca 70 233-237