HiCdat: a fast and easy-to-use Hi-C data analysis tool

被引:0
作者
Marc W. Schmid
Stefan Grob
Ueli Grossniklaus
机构
[1] University of Zurich,Institute of Plant Biology
[2] Universitätstrasse 2,Zurich
来源
BMC Bioinformatics | / 16卷
关键词
Chromosome Conformation Capture (3C); Nuclear architecture; Hi-C; Data analysis; Sample comparison; Structural domains; Correlation to (epi-)genome;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 137 条
  • [11] Selvaraj S(2011)Two-dimensional segmentation for analyzing Hi-C data Nat Genet 43 1059-65
  • [12] Yue F(2012)Combining a wavelet change point and the Bayes factor for analysing chromosomal interaction data Bioinformatics 28 3131-3
  • [13] Kim A(2010)Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture Mol Cell 38 576-89
  • [14] Li Y(2012)HiCNorm: removing biases in Hi-C data via Poisson regression Nat Methods 9 999-1003
  • [15] Shen Y(2014)Simple combinations of lineage-determining transcription factors prime Bioinformatics 30 1620-22
  • [16] Moissiard G(2013)-regulatory elements required for macrophage and B cell identities Nucleic Acids Res 41 108-4
  • [17] Cokus SJ(2013)Iterative correction of Hi-C data reveals hallmarks of chromosome organization Nature 503 290-93
  • [18] Cary J(2009)HiBrowse: multi-purpose statistical analysis of genome-wide chromatin 3D organization Science 326 289-21
  • [19] Feng S(2012)The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote Cell 148 908-9
  • [20] Billi AC(2013)A high-resolution map of the three-dimensional chromatin interactome in human cells Genome Biol 14 129-66