Hydrogen storage thermodynamic and kinetic characteristics of PrMg12-type alloys synthesized by mechanical milling

被引:0
作者
Jin-liang Gao
Yan Qi
Ya-qin Li
Hong-wei Shang
Dong-liang Zhao
Yang-huan Zhang
机构
[1] Weishan Cisri-Eare Earth Materials Co.,Department of Functional Material Research
[2] Ltd.,undefined
[3] Central Iron and Steel Research Institute,undefined
来源
Journal of Iron and Steel Research International | 2017年 / 24卷
关键词
PrMg; alloy; Mechanical milling; Activation energy; Hydrogen storage dynamics; Thermodynamics;
D O I
暂无
中图分类号
学科分类号
摘要
To improve the hydrogen storage performance of PrMg12-type alloys, Ni was adopted to replace partially Mg in the alloys. The PrMg11Ni+x wt. % Ni (x = 100, 200) alloys were prepared via mechanical milling. The phase structures and morphology of the experimental alloys were investigated by X-ray diffraction and transmission electron microscopy. The results show that increasing milling time and Ni content accelerate the formation of nanocrystalline and amorphous structure. The gaseous hydrogen storage properties of the experimental alloys were determined by differential scanning calorimetry (DSC) and Sievert apparatus. In addition, increasing milling time makes the hydrogenation rates of the alloys augment firstly and decline subsequently and the dehydrogenation rate always increases. The maximum capacity is 5.572 wt. % for the x = 100 alloy and 5.829 wt. % for the x = 200 alloy, respectively. The enthalpy change (ΔH), entropy change (ΔS) and the dehydrogenation activation energy (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\rm{k}}^{{\rm{de}}}$\end{document}) markedly lower with increasing the milling time and the Ni content due to the generation of nanocrystalline and amorphous structure.
引用
收藏
页码:198 / 205
页数:7
相关论文
共 132 条
[21]  
Lass E. A.(2012)undefined Int. J. Hydrogen Energy 37 3548-3557
[22]  
Song M. Y.(2012)undefined Int. J. Hydrogen Energy 37 10709-10714
[23]  
Kwon S. N.(2008)undefined J. Alloys Compd. 461 72-76
[24]  
Park H. R.(2007)undefined J. Alloys Compd. 432 217-231
[25]  
Hong S. H.(2005)undefined J. Alloys Compd. 404–406 716-719
[26]  
Kalinichenka S.(2003)undefined J. Alloys Compd. 356–357 557-561
[27]  
Röntzsch L.(2012)undefined Int. J. Hydrogen Energy 37 12358-12364
[28]  
Riedl T.(2010)undefined Acta Mater. 58 2510-2519
[29]  
Weißgärber T.(2002)undefined Int. J. Hydrogen Energy 27 69-77
[30]  
Kieback B.(2013)undefined Int. J. Hydrogen Energy 38 8838-8851