Two New Iteration Methods with Optimal Parameters for Solving Absolute Value Equations

被引:5
作者
Ali R. [1 ]
Pan K. [1 ]
Ali A. [1 ]
机构
[1] School of Mathematics and Statistics, HNP-LAMA, Central South University, Hunan, Changsha
关键词
Absolute value equations; Convergence analysis; GGS method; Iteration methods; Matrix splitting; Numerical examples;
D O I
10.1007/s40819-022-01324-2
中图分类号
学科分类号
摘要
Many problems in the fields of management science, operation research, and engineering can be solved using absolute value equations (AVEs). Recently, the generalized Gauss–Seidel (GGS) iteration technique has been developed (Edalatpour et al. [Appl. Math. Comput., 293:156–167, 2017]). This paper presents two new iteration methods that extend the GGS iteration technique with three additional parameters for solving AVEs. Moreover, we present the convergence results of these methods via some theorems. Numerical examples demonstrate the credibility of our methodologies. © 2022, The Author(s), under exclusive licence to Springer Nature India Private Limited.
引用
收藏
相关论文
共 39 条
[1]  
Abdallah L., Haddou M., Migot T., Solving absolute value equation using complementarity and smoothing functions, J. Comput. Appl. Math., 327, pp. 196-207, (2018)
[2]  
Amin M., Erfanian M., A dynamic model to solve the absolute value equations, J. Comput. Appl. Math., 333, pp. 28-35, (2018)
[3]  
Amin M., Eshaghnezhad M., Effati S., An efficient neural network model for solving the absolute value equations, IEEE Trans. Circuits Syst II, Express Briefs, 65, 3, pp. 391-395, (2017)
[4]  
Ali R., Pan K., The new iteration methods for solving absolute value equations, Appl. Math., (2021)
[5]  
Ali R., Kejia P., Ali A., Two generalized successive overrelaxation methods for solving absolute value equations, Math. Theory Appl., 40, 4, pp. 44-55, (2020)
[6]  
Ali R., Pan K., The solution of the absolute value equations using two generalized accelerated overrelaxation methods, Asian-Eur. J. Math., (2021)
[7]  
Ali R., Ali A., Iqbal S., Iterative methods for solving absolute value equations, J. Math. Comput. Sci., 26, pp. 322-329, (2022)
[8]  
Chen C., Yu D., Han D., Optimal parameter for the SOR-like iteration method for solving the system of absolute value equations, (2020)
[9]  
Caccetta L., Qu B., Zhou G., A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl., 48, pp. 45-58, (2011)
[10]  
Cottle R.W., Pang J.-S., Stone R.E., The linear complementarity problem, (1992)