Partition functions of holographic minimal models

被引:0
作者
Matthias R. Gaberdiel
Rajesh Gopakumar
Thomas Hartman
Suvrat Raju
机构
[1] ETH Zurich,Institut für Theoretische Physik
[2] Harish-Chandra Research Institute,Institute for Advanced Study
[3] School of Natural Sciences,undefined
来源
Journal of High Energy Physics | / 2011卷
关键词
AdS-CFT Correspondence; Conformal and W Symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
The partition function of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{W}_N} $\end{document} minimal model CFT is computed in the large N ’t Hooft limit and compared to the spectrum of the proposed holographic dual, a 3d higher spin gravity theory coupled to massive scalar fields. At finite N, the CFT contains additional light states that are not visible in the perturbative gravity theory. We carefully define the large N limit, and give evidence that, at N = ∞, the additional states become null and decouple from all correlation functions. The surviving states are shown to match precisely (for all values of the ’t Hooft coupling) with the spectrum of the higher spin gravity theory. The agreement between bulk and boundary is partially explained by symmetry considerations involving the conjectured equivalence between the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{W}_N} $\end{document} algebra in the large N limit and the higher spin algebra of the Vasiliev theory.
引用
收藏
相关论文
共 119 条
  • [1] Klebanov IR(2002)AdS dual of the critical O( Phys. Lett. B 550 213-undefined
  • [2] Polyakov AM(2002)) vector model Nucl. Phys. B 644 303-undefined
  • [3] Sezgin E(2003)Massless higher spins and holography Phys. Lett. B 567 139-undefined
  • [4] Sundell P(2010)Nonlinear equations for symmetric massless higher spin fields in ( Riv. Nuovo Cim. 033 123-undefined
  • [5] Vasiliev MA(2010))dS( JHEP 09 115-undefined
  • [6] Campoleoni A(2011)) JHEP 04 086-undefined
  • [7] Giombi S(2011)Metric-like lagrangian formulations for higher-spin fields of mixed symmetry Phys. Rev. D 83 025006-undefined
  • [8] Yin X(2010)Higher spin gauge theory and holography: the three-point functions JHEP 12 007-undefined
  • [9] Giombi S(2010)Higher spins in AdS and twistorial holography JHEP 11 007-undefined
  • [10] Yin X(2011)AdS JHEP 02 004-undefined