Geometry and Hardy spaces on spaces of homogeneous type in the sense of Coifman and Weiss

被引:0
作者
YanChang Han
YongSheng Han
Ji Li
机构
[1] South China Normal University,School of Mathematic Sciences
[2] Auburn University,Department of Mathematics
[3] Macquarie University,Department of Mathematics
来源
Science China Mathematics | 2017年 / 60卷
关键词
spaces of homogeneous type; Hardy space; singular integrals; Carleson measure space; BMO; 42B35; 43A85; 42B25; 42B30;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that the space of homogeneous type introduced by Coifman and Weiss (1971) provides a very natural setting for establishing a theory of Hardy spaces. This paper concentrates on how the geometrical conditions of the space of homogeneous type play a crucial role in building a theory of Hardy spaces via the Littlewood-Paley functions.
引用
收藏
页码:2199 / 2218
页数:19
相关论文
共 42 条
[1]  
Ahlfors L V(1947)Bounded analytic functions Duke Math J 14 1-11
[2]  
Arcozzi N(2014)Potential theory on trees, graphs and Ahlfors-regular metric spaces Potential Anal 41 317-366
[3]  
Rochberg R(2013)Orthonormal bases of regular wavelets in spaces of homogeneous type Appl Comput Harmon Anal 34 266-296
[4]  
Sawyer E T(2001)Manifolds and graphs with slow heat kernel decay Invent Math 144 609-649
[5]  
Auscher P(1964)Intermediate spaces and interpolation, the complex method Studia Math 24 113-190
[6]  
Hytönen T(1999)Differentiability of Lipschitz functions on metric measure spaces Geom Funct Anal 9 428-517
[7]  
Barlow M(1990)A Colloq Math 60/61 601-628
[8]  
Coulhon T(1977)( Bull Amer Math Soc 83 569-645
[9]  
Grigor’yan A(1985)) theorem with remarks on analytic capacity and the Cauchy integral Rev Mat Iberoamericana 1 1-56
[10]  
Calderón A(1990)Extensions of Hardy spaces and their use in analysis J Funct Anal 93 34-170