Solution of Euclidean combinatorial optimization problems by the method of construction of a lexicographic equivalence

被引:2
作者
O. A. Yemets
T. N. Barbolina
机构
[1] Yu. Kondratuyk Technical University,
[2] V. G. Korolenko Pedagogical University,undefined
关键词
multiset; Euclidean optimization problem; lexicographic exhaustive search;
D O I
10.1007/s10559-005-0010-2
中图分类号
学科分类号
摘要
A method of space partition based on an equivalence relation is considered. Based on a lexicographic exhaustive search for equivalence classes, algorithms are developed for solution of a new class of optimization problems, namely, linear conditional Euclidean problems of lexicographic combinatorial optimization.
引用
收藏
页码:726 / 734
页数:8
相关论文
共 17 条
[1]  
Yemets O. O.(2003)A nonreducible system of constraints for a common polyhedron of arrangements Ukr. Mat. Zh. 55 3-11
[2]  
Roskladka O. V.(2001)An irreducible system of constraints of a combinatorial polyhedron in a fractional-linear problem of optimization on permutations Diskret. Mat. 13 110-118
[3]  
Nedobachii S. S.(2002)Convex extension of polynomials specified on polypermutations by a modified Stoyan-Yakovlev method Zh. Vychisl. Mat. Mat. Fiz. 42 591-596
[4]  
Yemets O. A.(1999)Estimation of minimal objective functions during optimization on combinations Ukr. Mat. Zh. 51 1118-1121
[5]  
Nedobachii S. I.(1999)Algorithmic solution of two parametric optimization problems on a set of complete combinations Kibern. Sist. Anal. 6 160-165
[6]  
Kolechkina L. N.(2001)Optimization of linear functions on the nodes of a permutable polyhedron with additional linear constraints Ukr. Mat. Zh. 9 1278-1280
[7]  
Valuiskaya O. A.(2003)Solution of problems of nonlinear conditional optimization on arrangements by the truncation method Ukr. Mat. Zh. 55 604-611
[8]  
Yemets O. A.(undefined)undefined undefined undefined undefined-undefined
[9]  
Romanova N. G.(undefined)undefined undefined undefined undefined-undefined
[10]  
Yemets O. O.(undefined)undefined undefined undefined undefined-undefined