On Asymptotic Properties of Solutions of Diffusion Equations

被引:0
作者
L. A. Bagirov
V. A. Kondratiev
机构
关键词
Diffusion Equation; Asymptotic Property; Neumann Condition; Side Boundary;
D O I
10.1023/A:1022296627332
中图分类号
学科分类号
摘要
In this work the authors study the conditions for the existence of diffusion equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\partial _t u\left( {x,t} \right) = 3DA\left( {x,\partial x} \right)u\left( {x,t} \right) + f\left( u \right),A\left( {x,\partial x} \right) \equiv \sum\limits_{i,j = 3D1}^n {\partial _{xj} \left( {a_{ij} \left( x \right)\partial _{xi} } \right)}$$ \end{document} in the cylinder Q = 3DΩ × \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}$$ \end{document}+, Ω ⊂ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}$$ \end{document}n, satisfying the homogeneous Dirichlet or Neumann conditions on the side boundary of the cylinder Q and decreasing with respect to t as a power for t → ∞.
引用
收藏
页码:1407 / 1428
页数:21
相关论文
共 50 条
[41]   Asymptotic representations of solutions of essentially nonlinear cyclic systems of ordinary differential equations [J].
V. M. Evtukhov ;
E. S. Vladova .
Differential Equations, 2012, 48 :630-646
[42]   Time rescaling and asymptotic behavior of some fourth-order degenerate diffusion equations [J].
López, JL ;
Soler, J ;
Toscani, G .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (6-7) :721-736
[43]   Dispersion and asymptotic properties of finite-difference approximations to Schrodinger equations [J].
Matsuka, NP .
DIFFERENTIAL EQUATIONS, 2001, 37 (08) :1176-1179
[44]   ASYMPTOTIC REPRESENTATIONS OF THE SOLUTIONS OF ESSENTIALLY NONLINEAR NONAUTONOMOUS SECOND-ORDER DIFFERENTIAL EQUATIONS [J].
Evtukhov, V. M. ;
Belozerova, M. A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2008, 60 (03) :357-383
[45]   Asymptotic representations of solutions of one class of nonlinear nonautonomous differential equations of the third order [J].
Evtukhov V.M. ;
Stekhun A.A. .
Ukrainian Mathematical Journal, 2007, 59 (10) :1528-1543
[46]   Analytical Solutions of Fractional Order Diffusion Equations by Natural Transform Method [J].
Shah, Kamal ;
Khalil, Hammad ;
Khan, Rahmat Ali .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3) :1479-1490
[47]   SPECIAL SOLUTIONS FOR THE LAPLACE AND DIFFUSION EQUATIONS ASSOCIATED WITH THE ALGEBRAIC NUMBER FIELD [J].
Yang, Xiao-Jun ;
Sweilam, Nasser Hassan ;
Bayram, Mustafa .
THERMAL SCIENCE, 2023, 27 (1B) :477-481
[48]   Analytical Solutions of Fractional Order Diffusion Equations by Natural Transform Method [J].
Kamal Shah ;
Hammad Khalil ;
Rahmat Ali Khan .
Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 :1479-1490
[49]   Explicit solutions to dynamic diffusion-type equations and their time integrals [J].
Slavik, Antonin ;
Stehlik, Petr .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 :486-505
[50]   Classification and Approximate Functional Separable Solutions to the Generalized Diffusion Equations with Perturbation [J].
Ji, Fei-Yu ;
Zhang, Shun-Li .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2013, 68 (10-11) :621-628