On Asymptotic Properties of Solutions of Diffusion Equations

被引:0
作者
L. A. Bagirov
V. A. Kondratiev
机构
关键词
Diffusion Equation; Asymptotic Property; Neumann Condition; Side Boundary;
D O I
10.1023/A:1022296627332
中图分类号
学科分类号
摘要
In this work the authors study the conditions for the existence of diffusion equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\partial _t u\left( {x,t} \right) = 3DA\left( {x,\partial x} \right)u\left( {x,t} \right) + f\left( u \right),A\left( {x,\partial x} \right) \equiv \sum\limits_{i,j = 3D1}^n {\partial _{xj} \left( {a_{ij} \left( x \right)\partial _{xi} } \right)}$$ \end{document} in the cylinder Q = 3DΩ × \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}$$ \end{document}+, Ω ⊂ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}$$ \end{document}n, satisfying the homogeneous Dirichlet or Neumann conditions on the side boundary of the cylinder Q and decreasing with respect to t as a power for t → ∞.
引用
收藏
页码:1407 / 1428
页数:21
相关论文
共 50 条
[31]   Solutions of the Dirichlet-Sch problem and asymptotic properties of solutions for the Schrodinger equation [J].
Qiao, Lei .
APPLIED MATHEMATICS LETTERS, 2017, 71 :44-50
[32]   Analytic approximate solutions of diffusion equations arising in oil pollution [J].
Ahmad, Hijaz ;
Khan, Tufail A. ;
Durur, Hulya ;
Ismail, G. M. ;
Yokus, Asif .
JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2021, 6 (01) :62-69
[33]   The solutions of certain generalized anomalous diffusion equations of fractional order [J].
B. B. Jaimini ;
Hemlata Saxena .
Astrophysics and Space Science, 2010, 330 :289-293
[34]   The solutions of certain generalized anomalous diffusion equations of fractional order [J].
Jaimini, B. B. ;
Saxena, Hemlata .
ASTROPHYSICS AND SPACE SCIENCE, 2010, 330 (02) :289-293
[35]   On the long time behaviour of solutions to nonlinear diffusion equations on Rn [J].
E. Feireisl .
Nonlinear Differential Equations and Applications NoDEA, 1997, 4 :43-60
[36]   Asymptotic representations of solutions of nonautonomous ordinary differential equations with regularly varying nonlinearities [J].
Evtukhov, V. M. ;
Samoilenko, A. M. .
DIFFERENTIAL EQUATIONS, 2011, 47 (05) :627-649
[37]   Asymptotic representations of solutions of nonautonomous ordinary differential equations with regularly varying nonlinearities [J].
V. M. Evtukhov ;
A. M. Samoilenko .
Differential Equations, 2011, 47
[38]   Asymptotic representations of solutions of essentially nonlinear second-order differential equations [J].
V. M. Evtukhov ;
V. M. Kharkov .
Differential Equations, 2007, 43 :1340-1352
[39]   Asymptotic representations of solutions of essentially nonlinear second-order differential equations [J].
Evtukhov, V. M. ;
Kharkov, V. M. .
DIFFERENTIAL EQUATIONS, 2007, 43 (10) :1340-1352
[40]   Asymptotic representations of solutions of essentially nonlinear cyclic systems of ordinary differential equations [J].
Evtukhov, V. M. ;
Vladova, E. S. .
DIFFERENTIAL EQUATIONS, 2012, 48 (05) :630-646