Convergence order of implicit Euler numerical scheme for maximal monotone differential inclusions

被引:0
|
作者
Jérôme Bastien
机构
[1] Université Claude Bernard-Lyon 1,Centre de Recherche et d’Innovation sur le Sport (CRIS), U.F.R.S.T.A.P.S.
关键词
Primary 34G25; Secondary 34A60; 34K28; 47H05; 47J35; 65L70; Differential inclusions; Implicit Euler numerical scheme; Order one of convergence; Multivalued maximal monotone operator; Subdifferential; Frictions laws;
D O I
暂无
中图分类号
学科分类号
摘要
In the present work, we deal with the convergence of a class of numerical schemes for maximal monotone evolution systems in the particular case where the maximal monotone term is a subdifferential of a convex proper and lower semi-continuous function and the right-hand side depends on time and on solution. More precisely, we focus on an implicit Euler scheme and we show that the order of this scheme is one. Finally, some applications are given for a large class of rheological models.
引用
收藏
页码:955 / 966
页数:11
相关论文
共 50 条
  • [21] MINIMAX CONTROL OF MAXIMAL MONOTONE DIFFERENTIAL-INCLUSIONS IN RN
    PAPAGEORGIOU, NS
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1992, 23 (12) : 2253 - 2264
  • [22] On the Convergence Analysis of the Inexact Linearly Implicit Euler Scheme for a Class of Stochastic Partial Differential Equations
    Cioica, P. A.
    Dahlke, S.
    Doehring, N.
    Friedrich, U.
    Kinzel, S.
    Lindner, F.
    Raasch, T.
    Ritter, K.
    Schilling, R. L.
    POTENTIAL ANALYSIS, 2016, 44 (03) : 473 - 495
  • [23] On the Convergence Analysis of the Inexact Linearly Implicit Euler Scheme for a Class of Stochastic Partial Differential Equations
    P. A. Cioica
    S. Dahlke
    N. Döhring
    U. Friedrich
    S. Kinzel
    F. Lindner
    T. Raasch
    K. Ritter
    R. L. Schilling
    Potential Analysis, 2016, 44 : 473 - 495
  • [24] Strong convergence of projection scheme for zeros of maximal monotone operators
    Wei, Li
    Zhou, Haiyun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) : 341 - 346
  • [25] SEMI-IMPLICIT EULER SCHEMES FOR ORDINARY DIFFERENTIAL INCLUSIONS
    Rieger, Janosch
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 895 - 914
  • [26] THE EULER SCHEME FOR STATE CONSTRAINED ORDINARY DIFFERENTIAL INCLUSIONS
    Rieger, Janosch
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (08): : 2729 - 2744
  • [27] MAXIMAL CONVERGENCE ORDER IN THE NUMERICAL TREATMENT OF USUAL DIFFERENTIAL-EQUATION WITH SPLINES
    MULTHEI, HN
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1982, 62 (5BIS): : T340 - T342
  • [28] Monotone Technique For Second Order Discontinuous Differential Inclusions
    Dhage, Bapurao C.
    APPLIED MATHEMATICS E-NOTES, 2006, 6 : 66 - 73
  • [29] Existence and relaxation of solutions for evolution differential inclusions with maximal monotone operators
    Amira Makhlouf
    Dalila Azzam-Laouir
    Charles Castaing
    Journal of Fixed Point Theory and Applications, 2021, 23
  • [30] Existence solutions for a couple of differential inclusions involving maximal monotone operators
    Dib, Karima
    Azzam-Laouir, Dalila
    APPLICABLE ANALYSIS, 2022, : 2628 - 2650