Convergence order of implicit Euler numerical scheme for maximal monotone differential inclusions

被引:0
|
作者
Jérôme Bastien
机构
[1] Université Claude Bernard-Lyon 1,Centre de Recherche et d’Innovation sur le Sport (CRIS), U.F.R.S.T.A.P.S.
关键词
Primary 34G25; Secondary 34A60; 34K28; 47H05; 47J35; 65L70; Differential inclusions; Implicit Euler numerical scheme; Order one of convergence; Multivalued maximal monotone operator; Subdifferential; Frictions laws;
D O I
暂无
中图分类号
学科分类号
摘要
In the present work, we deal with the convergence of a class of numerical schemes for maximal monotone evolution systems in the particular case where the maximal monotone term is a subdifferential of a convex proper and lower semi-continuous function and the right-hand side depends on time and on solution. More precisely, we focus on an implicit Euler scheme and we show that the order of this scheme is one. Finally, some applications are given for a large class of rheological models.
引用
收藏
页码:955 / 966
页数:11
相关论文
共 50 条