Corrigendum: central limit theorems for classical cusp forms

被引:7
作者
Elliott, P. D. T. A. [1 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
关键词
Erdos-Kac; Automorphic forms; Central limit theorem;
D O I
10.1007/s11139-014-9629-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A correction is made to the renormalising constants in an example relating the classical theorem of ErdAs-Kac to the Fourier coefficients of automorphic forms.
引用
收藏
页码:99 / 102
页数:4
相关论文
共 50 条
  • [1] Corrigendum: central limit theorems for classical cusp forms
    P. D. T. A. Elliott
    The Ramanujan Journal, 2015, 36 : 99 - 102
  • [2] Central limit theorems for classical multidimensional scaling
    Li, Gongkai
    Minh Tang
    Charon, Nichlas
    Priebe, Carey
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 2362 - 2394
  • [3] From Classical to Modern Nonlinear Central Limit Theorems
    Ulyanov, Vladimir V.
    MATHEMATICS, 2024, 12 (14)
  • [4] Central limit theorems for quadratic forms with time-domain conditions
    Giraitis, L
    Taqqu, MS
    ANNALS OF PROBABILITY, 1998, 26 (01) : 377 - 398
  • [5] Central Limit Theorems revisited
    Kundu, S
    Majumdar, S
    Mukherjee, K
    STATISTICS & PROBABILITY LETTERS, 2000, 47 (03) : 265 - 275
  • [6] CENTRAL LIMIT THEOREMS FOR CLASSICAL LIKELIHOOD RATIO TESTS FOR HIGH-DIMENSIONAL NORMAL DISTRIBUTIONS
    Jiang, Tiefeng
    Yang, Fan
    ANNALS OF STATISTICS, 2013, 41 (04) : 2029 - 2074
  • [7] Central limit theorems in linear dynamics
    Bayart, Frederic
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (03): : 1131 - 1158
  • [8] Central limit theorems for Gaussian polytopes
    Barany, Imre
    Vu, Van
    ANNALS OF PROBABILITY, 2007, 35 (04) : 1593 - 1621
  • [9] Central limit theorems for supercritical superprocesses
    Ren, Yan-Xia
    Song, Renming
    Zhang, Rui
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (02) : 428 - 457
  • [10] CENTRAL LIMIT THEOREMS IN THE CONFIGURATION MODEL
    Barbour, A. D.
    Rollin, Adrian
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (02) : 1046 - 1069