Asymptotic Behavior in a Laminated Beams Due Interfacial Slip with a Boundary Dissipation of Fractional Derivative Type

被引:0
作者
Tita Maryati
Jaime Muñoz Rivera
Verónica Poblete
Octavio Vera
机构
[1] Islamic State University (UIN),Mathematics Education Department
[2] Universidad del Bío-Bío,Departamento de Matemáticas
[3] LNCC Petrópolis,Departamento de Matemáticas
[4] Universidad de Chile,undefined
来源
Applied Mathematics & Optimization | 2021年 / 84卷
关键词
Thermoelastic structure; Exponential stability; Polynomial stability; Laminated beam; Interfacial slip; Semigroup theory; Fractional derivative; 34B05; 34D05; 34H05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a laminated beams due interfacial slip with control boundary conditions of fractional derivative type. We show the existence and uniqueness of solutions. Furthermore, concerning the asymptotic behavior we show the lack of exponential stability and the polynomial decay rate of the corresponding semigroup by using the classic theorem of Borichev and Tomilov.
引用
收藏
页码:85 / 102
页数:17
相关论文
共 26 条
[1]  
Borichev A(2010)Optimal polynomial decay of functions and operator semigroups Math. Ann. 347 455-478
[2]  
Tomilov Y(2007)Easy test for stability of laminated beams with structural damping and boundary feedback controls J. Dyn. Control Syst. 13 313-336
[3]  
Cao X-G(1967)Linear models of dissipation whose Q is almost frequency independent part II Geophys. J. Int. 13 529-539
[4]  
Liu D-Y(2017)3D memory constitutive equations for plastic media J. Eng. Mech. 143 D4016008-198
[5]  
Xu G-Q(1971)Linear models of dissipation in anelastic solids Riv. Nuovo Cimento. (Ser. II) 1 161-464
[6]  
Caputo M(1989)Fractional order Volterra equations with applications to elasticity J. Math. Anal. Appl. 139 448-170
[7]  
Caputo M(1994)In control and estimation of distributed parameter systems: non-linear phenomena Int. Ser. Numer. Anal. 118 143-202
[8]  
Fabrizio M(1997)Structural damping in a laminated beams due to interfacial slip J. Sound Vib. 204 183-14
[9]  
Caputo M(2015)Stabilization of laminated beams with interfacial slip Electron. J. Diff. Equ. 2015 1-18
[10]  
Mainardi F(2018)Stability of an $N$-component Timoshenko beam with localized Kelvin–Voigt and frictional dissipation Electron. J. Diff. Equ. 2018 1-257