Coevolutionary Dynamics of Host Immune and Parasite Virulence Based on an Age-Structured Epidemic Model

被引:0
作者
Xi-Chao Duan
Jiangyue Zhao
Maia Martcheva
机构
[1] University of Shanghai for Science and Technology,College of Science
[2] University of Florida,Department of Mathematics
来源
Bulletin of Mathematical Biology | 2023年 / 85卷
关键词
Case mortality; Critical function analysis; Host immune regulation; Infection age; Virulence evolution; 92B05;
D O I
暂无
中图分类号
学科分类号
摘要
Hosts can activate a defensive response to clear the parasite once being infected. To explore how host survival and fecundity are affected by host-parasite coevolution for chronic parasitic diseases, in this paper, we proposed an age-structured epidemic model with infection age, in which the parasite transmission rate and parasite-induced mortality rate are structured by the infection age. By use of critical function analysis method, we obtained the existence of the host immune evolutionary singular strategy which is a continuous singular strategy (CSS). Assume that parasite-induced mortality begins at infection age τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} and is constant v thereafter. We got that the value of the CSS, c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c^*$$\end{document}, monotonically decreases with respect to infection age τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} (see Case (I)), while it is non-monotone if the constant v positively depends on the immune trait c (see Case (II)). This non-monotonicity is verified by numerical simulations and implies that the direction of immune evolution depends on the initial value of immune trait. Besides that, we adopted two special forms of the parasite transmission rate to study the parasite’s virulence evolution, by maximizing the basic reproduction ratio R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document}. The values of the convergence stable parasite’s virulence evolutionary singular strategies v∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v^*$$\end{document} and k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^*$$\end{document} increase monotonically with respect to time lag L (i.e., the time lag between the onset of transmission and mortality). At the singular strategy v∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v^*$$\end{document} and k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^*$$\end{document}, we further obtained the expressions of the case mortalities χ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^*$$\end{document} and how they are affected by the time lag L. Finally, we only presented some preliminary results about host and parasite coevolution dynamics, including a general condition under which the coevolutionary singular strategy (c∗,v∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(c^*,v^*)$$\end{document} is evolutionarily stable.
引用
收藏
相关论文
共 62 条
[1]  
Bowers RG(2005)The geometric theory of adaptive evolution: trade-off and invasion plots J Theor Biol 233 363-377
[2]  
Hoyle A(2022)Coevolutionary theory of hosts and parasites J Evolut Biol 35 205-224
[3]  
White A(2010)Css, nis and dynamic stability for two-species behavioral models with continuous trait spaces J Theor Biol 262 80-89
[4]  
Boots M(2017)Effect of superinfection and cost of immunity on host-parasite co-evolution Discrete Contin Dynam Syst Series B 22 809-829
[5]  
Buckingham LJ(2003)Virulence evolution and the timing of disease life-history events Trends Ecol Evolut 18 113-118
[6]  
Ashby B(2003)A consideration of patterns of virulence arising from host-parasite coevolution Evolution 57 671-676
[7]  
Cressman R(2007)Evolution of parasite virulence when host responses cause disease Proceed Royal Soc B 274 2685-2692
[8]  
Dai L(1997)Metabolic costs of mounting an antigen-stimulated immune response in adult and aged c57bl/6j mice Am J Physiol 42 R1631-R1637
[9]  
Zou X(1996)The dynamical theory of coevolution: a derivation from stochastic ecological processes J Math Biol 34 579-612
[10]  
Day T(1983)Evolutionary and continuous stability J Theor Biol 103 99-111