Solutions of Complex Differential Equation Having Pre-given Zeros in the Unit Disc

被引:0
作者
Janne Gröhn
机构
[1] University of Eastern Finland,Department of Physics and Mathematics
来源
Constructive Approximation | 2019年 / 49卷
关键词
Blaschke sequence; Linear differential equation; Normal function; Oscillation of solution; Prescribed zeros; 34C10; 30D45;
D O I
暂无
中图分类号
学科分类号
摘要
Behavior of solutions of f′′+Af=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f''+Af=0$$\end{document} is discussed under the assumption that A is analytic in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} and supz∈D(1-|z|2)2|A(z)|<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sup _{z\in \mathbb {D}}(1-|z|^2)^2|A(z)|<\infty $$\end{document}, where D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} is the unit disc of the complex plane. As a main result, it is shown that such differential equation may admit a nontrivial solution whose zero-sequence does not satisfy the Blaschke condition. This gives an answer to an open question in the literature. It is also proved that Λ⊂D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda \subset \mathbb {D}$$\end{document} is the zero-sequence of a nontrivial solution of f′′+Af=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f''+Af=0$$\end{document}, where |A(z)|2(1-|z|2)3dm(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|A(z)|^2(1-|z|^2)^3\, \hbox {d}m(z)$$\end{document} is a Carleson measure if and only if Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda $$\end{document} is uniformly separated. As an application, an old result, according to which there exists a non-normal function that is uniformly locally univalent, is improved.
引用
收藏
页码:295 / 306
页数:11
相关论文
共 29 条
[1]  
Aulaskari R(1996)Some subclasses of BMOA and their characterization in terms of Carleson measures Rocky Mt. J. Math. 26 485-506
[2]  
Stegenga D(1962)Interpolations by bounded analytic functions and the corona problem Ann. Math. 76 547-559
[3]  
Xiao J(1997)Some results on J. Reine Angew. Math. 485 173-195
[4]  
Carleson L(2017) spaces, Proc. Am. Math. Soc. 145 1209-1220
[5]  
Essén M(2012)On non-normal solutions of linear differential equations Constr. Approx. 35 345-361
[6]  
Xiao J(2017)New findings on the Bank–Sauer approach in oscillation theory Bull. Lond. Math. Soc. 49 380-390
[7]  
Gröhn J(2013)Uniform separation, hyperbolic geodesics and zero distribution of solutions of linear differential equations Blaschke Prod. Appl. 65 43-98
[8]  
Gröhn J(1949)A survey on Blaschke-oscillatory differential equations, with updates Bull. Am. Math. Soc. 55 552-553
[9]  
Heittokangas J(2006)Remarks on a paper by Zeev Nehari Contemp. Math. 404 145-152
[10]  
Gröhn J(1973)Blaschke sets for Bergman spaces, Bergman spaces and related topics in complex analysis Bull. Lond. Math. Soc. 5 291-294