Local gradient estimates for a type of fully nonlinear equations

被引:0
作者
Wei, Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing, Peoples R China
关键词
Local gradient estimates; Fully nonlinear elliptic equations; 2-dimensional manifolds;
D O I
10.1007/s00013-024-01992-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming that the solution is bounded from one-side, by Bernstein-type arguments, on (M2,g),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M<^>{2},g),$$\end{document} we prove the local gradient estimates for a type of fully nonlinear equation from conformal geometry.
引用
收藏
页码:681 / 690
页数:10
相关论文
共 9 条
[1]  
Chen SYS, 2005, INT MATH RES NOTICES, V2005, P3403
[2]   Local gradient estimates for quotient equations in conformal geometry [J].
Guan, Pengfei ;
Lin, Chang-Shou ;
Wang, Guofang .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2007, 18 (04) :349-361
[3]  
Guan PF, 2003, INT MATH RES NOTICES, V2003, P1413
[4]   On some conformally invariant fully nonlinear equations [J].
Li, AB ;
Li, YY .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (10) :1416-1464
[5]  
Li Yanyan, 2023, [Peking Mathematical Journal, 北京数学杂志], V6, P609
[6]   On the?2-Nirenberg problem on S2 [J].
Li, YanYan ;
Lu, Han ;
Lu, Siyuan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (10)
[7]   Local gradient estimates of solutions to some conformally invariant fully nonlinear equations [J].
Li, YanYan .
COMPTES RENDUS MATHEMATIQUE, 2006, 343 (04) :249-252
[8]  
Sheng WM, 2007, J DIFFER GEOM, V77, P515, DOI 10.4310/jdg/1193074903
[9]   A priori estimates and existence for a class of fully nonlinear elliptic equations in conformal geometry [J].
Wang, Xu-Jia .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) :169-178