Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories

被引:0
作者
Hu Z. [1 ,2 ]
Tian M. [3 ]
Nysten B. [1 ,2 ]
Jonas A.M. [1 ,2 ]
机构
[1] Unité de Physique et de Chimie des Hauts Polymères (POLY), Université Catholique de Louvain, B-1348 Louvain-la-Neuve
[2] Research Center in Micro- and Nanoscopic Materials and Electronic Devices, CeRMiN, Université Catholique de Louvain, B-1348 Louvain-la-Neuve
[3] NT-MDT Europe B.V., 5674 CC, Nuenen
关键词
D O I
10.1038/nmat2339
中图分类号
学科分类号
摘要
Ferroelectric nanostructures are attracting tremendous interest because they offer a promising route to novel integrated electronic devices such as non-volatile memories and probe-based mass data storage. Here, we demonstrate that high-density arrays of nanostructures of a ferroelectric polymer can be easily fabricated by a simple nano-embossing protocol, with integration densities larger than 33 Gbits inch -2. The orientation of the polarization axis, about which the dipole moment rotates, is simultaneously aligned in plane over the whole patterned region. Internal structural defects are significantly eliminated in the nanostructures. The improved crystal orientation and quality enable well-defined uniform switching behaviour from cell to cell. Each nanocell shows a narrow and almost ideal square-shaped hysteresis curve, with low energy losses and a coercive field of ∼10 MV m-1, well below previously reported bulk values. These results pave the way to the fabrication of soft plastic memories compatible with all-organic electronics and low-power information technology. © 2009 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:62 / 67
页数:5
相关论文
共 41 条
[1]  
Scott J.F., Applications of modern ferroelectrics, Science, 315, pp. 954-959, (2007)
[2]  
Ahn C.H., Rabe K.M., Triscone J.-M., Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures, Science, 303, pp. 488-491, (2004)
[3]  
Junquera J., Ghosez P., Critical thickness for ferroelectricity in perovskite ultrathin films, Nature, 422, pp. 506-509, (2003)
[4]  
Naumov I.I., Bellaiche L., Fu H., Unusual phase transitions in ferroelectric nanodisks and nanorods, Nature, 432, pp. 737-740, (2004)
[5]  
Bune A.V., Et al., Two-dimensional ferroelectric films, Nature, 391, pp. 874-877, (1998)
[6]  
Fong D.D., Et al., Ferroelectricity in ultrathin perovskite films, Science, 304, pp. 1650-1653, (2004)
[7]  
Lichtensteiger C., Triscone J.-M., Junquera J., Ghosez P., Ferroelectricity and tetragonality in ultrathin PbTiO3 films, Phys. Rev. Lett, 94, (2005)
[8]  
Rabe K.M., Ahn C.H., Triscone J.-M., Physics of Ferroelectrics: A Modern Perspective, (2007)
[9]  
Gruverman A., Kholkin A., Nanoscale ferroelectrics: Processing, characterization and future trends, Rep. Prog. Phys, 69, pp. 2443-2474, (2006)
[10]  
Schilling A., Bowman R.M., Catalan G., Scott J.F., Gregg J.M., Morphological control of polar orientation in single-crystal ferroelectric nanowires, Nano Lett, 7, pp. 3787-3791, (2007)