Lifshitz Tails on the Bethe Lattice: A Combinatorial Approach

被引:0
作者
Victor Bapst
Guilhem Semerjian
机构
[1] Univ. Paris 06,LPTENS, Unité Mixte de Recherche (UMR 8549) du CNRS et de l’ENS, associée à l’UPMC
来源
Journal of Statistical Physics | 2011年 / 145卷
关键词
Density of states; Anderson model; Lifshitz tails; Trees;
D O I
暂无
中图分类号
学科分类号
摘要
The density of states of disordered hopping models generically exhibits an essential singularity around the edges of its support, known as a Lifshitz tail. We study this phenomenon on the Bethe lattice, i.e. for the large-size limit of random regular graphs, converging locally to the infinite regular tree, for both diagonal and off-diagonal disorder. The exponential growth of the volume and surface of balls on these lattices is an obstacle for the techniques used to characterize the Lifshitz tails in the finite-dimensional case. We circumvent this difficulty by computing bounds on the moments of the density of states, and by deriving their implications on the behavior of the integrated density of states.
引用
收藏
相关论文
共 84 条
  • [1] Anderson P.W.(1958)undefined Phys. Rev. 109 1492-undefined
  • [2] Wegner F.(1981)undefined Z. Phys. B 44 9-undefined
  • [3] Simon B.(1983)undefined Phys. Rev. B 27 3859-undefined
  • [4] Lifshitz I.M.(1964)undefined Adv. Phys. 13 483-undefined
  • [5] Simon B.(1985)undefined J. Stat. Phys. 38 65-undefined
  • [6] Fröhlich J.(1983)undefined Commun. Math. Phys. 88 151-undefined
  • [7] Spencer T.(1973)undefined J. Phys. C, Solid State Phys. 6 1734-undefined
  • [8] Abou-Chacra R.(1974)undefined J. Phys. C, Solid State Phys. 7 65-undefined
  • [9] Thouless D.J.(1985)undefined Phys. Rev. B 31 7393-undefined
  • [10] Anderson P.W.(1991)undefined Nucl. Phys. B 366 507-undefined