Neighbor sum distinguishing index of 2-degenerate graphs

被引:0
作者
Xiaolan Hu
Yaojun Chen
Rong Luo
Zhengke Miao
机构
[1] Central China Normal University,School of Mathematics and Statistics
[2] Nanjing University,Department of Mathematics
[3] Jiangsu Normal University,School of Mathematics and Statistics
来源
Journal of Combinatorial Optimization | 2017年 / 34卷
关键词
Neighbor sum distinguishing edge colorings; 2-Degenerate; Maximum degree;
D O I
暂无
中图分类号
学科分类号
摘要
We consider proper edge colorings of a graph G using colors in {1,…,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,\ldots ,k\}$$\end{document}. Such a coloring is called neighbor sum distinguishing if for each pair of adjacent vertices u and v, the sum of the colors of the edges incident with u is different from the sum of the colors of the edges incident with v. The smallest value of k in such a coloring of G is denoted by ndiΣ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm ndi}_{\Sigma }(G)$$\end{document}. In this paper we show that if G is a 2-degenerate graph without isolated edges, then ndiΣ(G)≤max{Δ(G)+2,7}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm ndi}_{\Sigma }(G)\le \max \{\Delta (G)+2,7\}$$\end{document}.
引用
收藏
页码:798 / 809
页数:11
相关论文
共 50 条
[1]  
Akbari S(2006)-Strong edge colorings of graphs Discrete Math. 306 3005-3010
[2]  
Bidkhori H(2007)Adjacent vertex distinguishing edge-colorings SIAM J Discrete Math 21 237-250
[3]  
Nosrati N(2012)Acyclic edge coloring of 2-degenerate graphs J Graph Theory 69 1-27
[4]  
Balister PN(2013)Strong chromatic index of 2-degenerate graphs J Graph Theory 73 119-126
[5]  
Győri E(2012)Neighbor sum distinguishing coloring of some graphs Discrete Math Algorithms Appl 4 125-147
[6]  
Lehel J(2014)Neighbor sum distinguishing edge colorings of graphs with bounded maximum average degree Discrete Appl Math 166 84-90
[7]  
Schelp RH(2006)On the neighbour-distinguishing index of a graph Graphs Comb 22 341-350
[8]  
Basavaraju M(2013)Neighbor sum distinguishing index Graphs Comb 29 1329-1336
[9]  
Chandran LS(2005) is a bound on the adjacent vertex distinguishing edge chromatic number J Comb Theory Ser B 95 246-256
[10]  
Chang GJ(2014)On neighbor-distinguishing index of planar graphs J Graph Theory 76 262-278