Hermitian and quaternionic Hermitian structures on tangent bundles

被引:0
作者
Rui Albuquerque
机构
[1] Centro de Investigação em Matemática e Aplicações (CIMA),Departamento de Matemática
[2] Universidade de Évora,undefined
来源
Geometriae Dedicata | 2008年 / 133卷
关键词
Torsion; Quaternionic; Hermitian; Kähler; Symplectic; 53C15; 53C26; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
We review the theory of quaternionic Kähler and hyperkähler structures. Then we consider the tangent bundle of a Riemannian manifold M endowed with a metric connection D, with torsion, and with its well estabilished canonical complex structure. With an almost Hermitian structure on M it is possible to find a quaternionic Hermitian structure on TM, which is quaternionic Kähler if, and only if, D is flat and torsion free. We also review the symplectic nature of TM, in the wider context of geometry with torsion. Finally we discover an S3-bundle of complex structures, which expands to TM the well known S2-twistor bundle of a quaternionic Hermitian manifold M.
引用
收藏
页码:95 / 110
页数:15
相关论文
共 21 条
[1]  
Agricola I.(2004)The geodesics of metric connections with vectorial torsion Ann. Global Anal. Geom. 26 321-332
[2]  
Thier C.(2006)Twistor theory of symplectic manifolds J. Geom. Phys. 52 214-246
[3]  
Albuquerque R.(2002)Special complex manifolds J. Geo. Phy. 42 85-105
[4]  
Rawnsley J.(2003)Complexification and hypercomplexification of manifolds with a linear connection Internat. J. Math. 14 813-824
[5]  
Alekseevsky D.V.(1962)On the geometry of the tangent bundle J. Reine Angew. Math. 210 73-78
[6]  
Cortés V.(2004)Quaternionic Kähler and hyperKähler manifolds with torsion and twistor spaces J. Reine Angew. Math. 567 215-233
[7]  
Devchand C.(1958)Sur certaines structures fibrées complexes Arch. Math. 9 102-109
[8]  
Bielawski R.(1976)Sui fibrati con struttura quaternionale generalizzata Ann. Mate. Pura Appl 107 131-157
[9]  
Dombrowsky P.(1955)Affine connections on manifolds with almost complex, quaternionic or Hermitian structure Jap. J. Math. 26 43-79
[10]  
Ivanov S.(1985)Twistor spaces Ann. of Global Anal. Geom. 3 29-58