Local well-posedness for a two-phase model with magnetic field and vacuum

被引:0
作者
Xiuhui Yang
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics, College of Science
来源
Applications of Mathematics | 2021年 / 66卷
关键词
two-phase flow; magnetic field; vacuum; local well-posedness; 76T10; 35Q35; 35D35; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proves the local well-posedness of strong solutions to a two-phase model with magnetic field and vacuum in a bounded domain Ω ⊂ ℝ3 without the standard compatibility conditions.
引用
收藏
页码:619 / 639
页数:20
相关论文
共 35 条
[1]  
Berselli L C(2012)On the vanishing viscosity limit of 3D Navier-Stokes equations under slip boundary conditions in general domains Commun. Math. Phys. 316 171-198
[2]  
Spirito S(2006)Stability and asymptotic analysis of a fluid-particle interaction model Commun. Partial Differ. Equations 31 1349-1379
[3]  
Carrillo J A(2004)Unique solvability of the initial boundary value problems for compressible viscous fluids J. Math. Pures Appl., IX. Sér. 83 243-275
[4]  
Goudon T(2003)Strong solutions of the Navier-Stokes equations for isentropic compressible fluids J. Differ. Equations 190 504-523
[5]  
Cho Y(2013)On the Funkc. Ekvacioj, Ser. Int. 56 441-505
[6]  
Choe H J(2009)-sectoriality and the initial boundary value problem for the viscous compressible fluid flow Nonlinear Anal., Real World Appl. 10 392-409
[7]  
Kim H(2020)Strong solution to the compressible magnetohydrodynamic equations with vacuum Commun. Math. Sci. 18 1891-1909
[8]  
Choe H J(2017)Local well-posedness of isentropic compressible Navier-Stokes equations with vacuum SIAM J. Math. Anal. 49 2409-2441
[9]  
Kim H(2001)Global existence for a class of large solutions to three-dimensional compressible magnetohydrodynamic equations with vacuum Arch. Ration. Mech. Anal. 158 61-90
[10]  
Enomoto Y(2018)The incompressible limit of the non-isentropic Euler equations J. Math. Fluid Mech. 20 1013-1034