The two-center problem of uncertain points on a real line

被引:0
|
作者
Haitao Xu
Jingru Zhang
机构
[1] Cleveland State University,
来源
Journal of Combinatorial Optimization | 2023年 / 45卷
关键词
Algorithms; Facility locations; Two-center; Uncertain points; Histogram;
D O I
暂无
中图分类号
学科分类号
摘要
Facility location problems on uncertain demand data have attracted significant attention recently. In this paper, we consider the two-center problem on uncertain points on a real line. The input is a set P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} of n uncertain points on the line. Each uncertain point is represented by a probability density function that is a piecewise uniform distribution (i.e., a histogram) of complexity m. The goal is to find two points (centers) on the line so that the maximum expected distance of all uncertain points to their expected closest centers is minimized. A previous algorithm for the uncertain k-center problem can solve this problem in O(mnlogmn+nlog2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(mn\log mn + n\log ^2n)$$\end{document} time. In this paper, we propose a more efficient algorithm solving it in O(mnlogm+nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(mn\log m+n\log n)$$\end{document} time. Besides, we give an algorithm of the same time complexity for the discrete case where each uncertain point follows a discrete distribution.
引用
收藏
相关论文
共 50 条
  • [1] The two-center problem of uncertain points on a real line
    Xu, Haitao
    Zhang, Jingru
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (02)
  • [2] The two-center problem of uncertain points on cactus graphs
    Haitao Xu
    Jingru Zhang
    Journal of Combinatorial Optimization, 2025, 49 (4)
  • [3] Improved Algorithms for the Bichromatic Two-Center Problem for Pairs of Points
    Wang, Haitao
    Xue, Jie
    ALGORITHMS AND DATA STRUCTURES, WADS 2019, 2019, 11646 : 578 - 591
  • [4] Improved algorithms for the bichromatic two-center problem for pairs of points
    Wang, Haitao
    Xue, Jie
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 100
  • [5] Variational Aspects of the Two-Center Problem
    Kuo-Chang Chen
    Archive for Rational Mechanics and Analysis, 2022, 244 : 225 - 252
  • [6] Variational Aspects of the Two-Center Problem
    Chen, Kuo-Chang
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 244 (02) : 225 - 252
  • [7] Two-center problem for the Dirac equation
    Matveev, VI
    Matrasulov, DU
    Rakhimov, HY
    PHYSICS OF ATOMIC NUCLEI, 2000, 63 (02) : 318 - 321
  • [8] Two-center problem for the dirac equation
    V. I. Matveev
    D. U. Matrasulov
    H. Yu. Rakhimov
    Physics of Atomic Nuclei, 2000, 63 : 318 - 321
  • [9] Computing a geodesic two-center of points in a simple polygon
    Oh, Eunjin
    Bae, Sang Won
    Ahn, Hee-Kap
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2019, 82 : 45 - 59
  • [10] Two-center Coulomb problem with Calogero interaction
    Hakobyan, T.
    Nersessian, A.
    PHYSICS OF ATOMIC NUCLEI, 2017, 80 (02) : 383 - 388