Turing instability in reaction-diffusion systems with nonlinear diffusion

被引:0
作者
E. P. Zemskov
机构
[1] Russian Academy of Sciences,Dorodnicyn Computing Center
来源
Journal of Experimental and Theoretical Physics | 2013年 / 117卷
关键词
Nonlinear Diffusion; Amplitude Equation; Linear Diffusion; Turing Pattern; Turing Instability;
D O I
暂无
中图分类号
学科分类号
摘要
The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.
引用
收藏
页码:764 / 769
页数:5
相关论文
共 36 条
  • [1] Turing A M(1952)undefined Philos. Trans. R. Soc. London, Ser. B 237 37-undefined
  • [2] Shigesada N(1979)undefined J. Theor. Biol. 79 83-undefined
  • [3] Kawasaki K(1987)undefined Biofizika 32 354-undefined
  • [4] Teramoto E(2007)undefined Phys.-Usp. 50 263-undefined
  • [5] Ivanitskii G R(2009)undefined Phys. Chem. Chem. Phys. 11 897-undefined
  • [6] Panfilov A V(2011)undefined Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 83 036105-undefined
  • [7] Tsyganov M A(2010)undefined Physica A (Amsterdam) 389 1812-undefined
  • [8] Tsyganov M A(2004)undefined Phys.-Usp. 47 923-undefined
  • [9] Biktashev V N(1970)undefined Nature (London) 225 535-undefined
  • [10] Brindley J(1991)undefined Science (Washington) 251 650-undefined