Non-Abelian T-duality, G2-structure rotation and holographic duals of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 Chern-Simons theories

被引:0
作者
Niall T. Macpherson
机构
[1] Swansea University,Department of Physics
关键词
Gauge-gravity correspondence; AdS-CFT Correspondence;
D O I
10.1007/JHEP11(2013)137
中图分类号
学科分类号
摘要
A new dynamic SU(3)-structure solution in type-IIA is found by T-dualising a deformation of the Maldacena-Nastase solution along an SU(2) isometry. It is argued that this is dual to a quiver gauge theory with multiple Chern-Simons levels. A clear way of defining Chern-Simons levels in terms of Page charges is presented, which is also used to define a Chern-Simons term for the G2-structure analogue of Klebanov-Strassler, providing evidence of a cascade in both the ranks and levels of the dual quiver.
引用
收藏
相关论文
共 108 条
  • [1] Schvellinger M(2001)Supergravity duals of gauge field theories from SU (2) × U (1) gauged supergravity in five-dimensions JHEP 06 025-undefined
  • [2] Tran TA(2001)NonAbelian vacua in D = 5, N = 4 gauged supergravity JHEP 04 023-undefined
  • [3] Chamseddine AH(2001)The Supergravity dual of a theory with dynamical supersymmetry breaking JHEP 09 024-undefined
  • [4] Volkov MS(2008)The Supergravity dual of 3d supersymmetric gauge theories with unquenched flavors JHEP 05 011-undefined
  • [5] Maldacena JM(2011)Fivebranes and resolved deformed G JHEP 05 109-undefined
  • [6] Nastase HS(2013) manifolds JHEP 04 076-undefined
  • [7] Canoura F(1993)SUGRA on G Nucl. Phys. B 403 377-undefined
  • [8] Merlatti P(2011) Structure Backgrounds that Asymptote to AdS Nucl. Phys. B 846 21-undefined
  • [9] Ramallo AV(2011) and Holographic Duals of Confining 2 + 1d Gauge Theories with N = 1 SUSY JHEP 06 106-undefined
  • [10] Gaillard J(2012)Duality symmetries from nonAbelian isometries in string theory JHEP 08 132-undefined