An adaptive regression based single-image super-resolution

被引:0
|
作者
Mingzheng Hou
Ziliang Feng
Haobo Wang
Zhiwei Shen
Sheng Li
机构
[1] Sichuan University,National key laboratory of fundamental science on synthetic vision
[2] Sichuan University,College of Computer Science, College of Software Engineering
[3] Sichuan University,College of Electronic Information
来源
Multimedia Tools and Applications | 2022年 / 81卷
关键词
Super-resolution; Dictionary learning; Global regression; Sparse representation; Image clustering;
D O I
暂无
中图分类号
学科分类号
摘要
Image super-resolution (SR) is an important topic of low-level computer vision and is widely used in different fields. In this paper, a novel single-image SR method, which integrates image clustering, sparse representation and linear regression is proposed. Existing global regression based methods usually assume that the corresponding coefficients of HR and LR image patches are equal, which cannot be strictly guaranteed in practice and possibly leads to inaccurate coefficient estimation. In order to adapt the regression model to different types of patches, clustering operations are applied on the training patches to calculate the coefficients of the HR and LR training patches in each class under the same pair of dictionaries. Then the projection relationship between the coefficients of HR and LR training patches in each class is obtained by solving a ridge regression problem. From the experimental results, our algorithm demonstrates better results in both qualitative and quantitative aspects and the computational speed of our methods is noticeably less than other competitive methods.
引用
收藏
页码:28231 / 28248
页数:17
相关论文
共 50 条
  • [21] Single-Image Super-Resolution Based on Semi-Supervised Learning
    Tang, Yi
    Yuan, Yuan
    Yan, Pingkun
    Li, Xuelong
    Pan, Xiaoli
    Li, Luoqing
    2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 52 - 56
  • [22] Blind Single-Image Super-Resolution Reconstruction Based on Motion Blur
    Qin, Fengqing
    Li, Zhong
    Zhu, Lihong
    You, Yingde
    Cao, Lilan
    ADVANCED RESEARCH ON AUTOMATION, COMMUNICATION, ARCHITECTONICS AND MATERIALS, PTS 1 AND 2, 2011, 225-226 (1-2): : 895 - 899
  • [23] REGULARIZED SINGLE-IMAGE SUPER-RESOLUTION BASED ON PROGRESSIVE GRADIENT ESTIMATION
    Yu, Lejun
    Wu, Xiaoyu
    Ge, Fengxiang
    Sun, Bo
    He, Jun
    Sablatnig, Robert
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1985 - 1989
  • [24] Single-Image Super-Resolution Using Active-Sampling Gaussian Process Regression
    Wang, Haijun
    Gao, Xinbo
    Zhang, Kaibing
    Li, Jie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (02) : 935 - 948
  • [25] Single-image super-resolution via local learning
    Tang, Yi
    Yan, Pingkun
    Yuan, Yuan
    Li, Xuelong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2011, 2 (01) : 15 - 23
  • [26] Memory-efficient single-image super-resolution
    Chiapputo, Nicholas
    Bailey, Colleen P.
    BIG DATA IV: LEARNING, ANALYTICS, AND APPLICATIONS, 2022, 12097
  • [27] Single-image super-resolution via local learning
    Yi Tang
    Pingkun Yan
    Yuan Yuan
    Xuelong Li
    International Journal of Machine Learning and Cybernetics, 2011, 2 : 15 - 23
  • [28] Rectified Binary Network for Single-Image Super-Resolution
    Xin, Jingwei
    Wang, Nannan
    Jiang, Xinrui
    Li, Jie
    Wang, Xiaoyu
    Gao, Xinbo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [29] Single-Image Super-Resolution based on Regularization with Stationary Gradient Fidelity
    Yu, Lejun
    Cao, Siming
    He, Jun
    Sun, Bo
    Dai, Feng
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [30] A fast single-image super-resolution method implemented with CUDA
    Yuan Yuan
    Xiaomin Yang
    Wei Wu
    Hu Li
    Yiguang Liu
    Kai Liu
    Journal of Real-Time Image Processing, 2019, 16 : 81 - 97